Survey on Discrete Surface Ricci Flow

Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures This work surv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer science and technology 2015-05, Vol.30 (3), p.598-613
1. Verfasser: 章敏 曾薇 郭任 罗锋 顾险峰
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 3
container_start_page 598
container_title Journal of computer science and technology
container_volume 30
creator 章敏 曾薇 郭任 罗锋 顾险峰
description Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures This work surveys the theory of discrete surface Ricci flow registration and shape analysis. Surface Ricci flow has been generalized to the discrete setting. its computational algorithms, and the applications for surface
doi_str_mv 10.1007/s11390-015-1548-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201503015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664786621</cqvip_id><wanfj_id>jsjkxjsxb_e201503015</wanfj_id><sourcerecordid>jsjkxjsxb_e201503015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7f2647b9d3e2322ae7016d8fdd57f3c2121c6fc08bd51ab4c03cc28a16c19ebd3</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxRdRUKt_gLdFETy4OpOkSfYo9RMEwY9zyGaztWu72yat1f_eKVuKePAyCcPvvce8JDlCuEAAdRkReQ4ZYD_DvtCZ3kr2UEvIhBL5Nv0BIMtp7Cb7MdYAXIEQe8npyyJ8-u-0bdLrUXTBz31Kq8o6nz6PnBult-N2eZDsVHYc_eH67SVvtzevg_vs8enuYXD1mDmBfJ6pikmhirzknnHGrFeAstRVWfZVxR1Dhk5WDnRR9tEWwgF3jmmL0mHui5L3kvPOd2mbyjZDU7eL0FCiqWP98VXHr8J4RkcCp0H4WYdPQztb-Dg3E7rBj8e28e0iGqR8UJImoSd_0I01SqUVWQpNFHaUC22MwVdmGkYTG74Ngln1bLqeDaWbVc9mpWGdJhLbDH345fyP6Hgd9N42wxnpNkmSKtRSMuQ_lwCIog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1678715048</pqid></control><display><type>article</type><title>Survey on Discrete Surface Ricci Flow</title><source>Springer Nature - Complete Springer Journals</source><creator>章敏 曾薇 郭任 罗锋 顾险峰</creator><creatorcontrib>章敏 曾薇 郭任 罗锋 顾险峰</creatorcontrib><description>Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures This work surveys the theory of discrete surface Ricci flow registration and shape analysis. Surface Ricci flow has been generalized to the discrete setting. its computational algorithms, and the applications for surface</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-015-1548-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Artificial Intelligence ; Computation ; Computer Science ; Constants ; Curvature ; Data Structures and Information Theory ; Design ; Design engineering ; Diffusion ; Fluid mechanics ; Information Systems Applications (incl.Internet) ; Mathematical analysis ; Nonlinearity ; Registration ; Software ; Software Engineering ; Studies ; Survey ; Theory of Computation ; Topological manifolds ; 形状分析 ; 扩散工艺 ; 曲率 ; 曲面离散 ; 计算工具 ; 计算算法 ; 非线性 ; 黎曼度量</subject><ispartof>Journal of computer science and technology, 2015-05, Vol.30 (3), p.598-613</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7f2647b9d3e2322ae7016d8fdd57f3c2121c6fc08bd51ab4c03cc28a16c19ebd3</citedby><cites>FETCH-LOGICAL-c413t-7f2647b9d3e2322ae7016d8fdd57f3c2121c6fc08bd51ab4c03cc28a16c19ebd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-015-1548-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-015-1548-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>章敏 曾薇 郭任 罗锋 顾险峰</creatorcontrib><title>Survey on Discrete Surface Ricci Flow</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures This work surveys the theory of discrete surface Ricci flow registration and shape analysis. Surface Ricci flow has been generalized to the discrete setting. its computational algorithms, and the applications for surface</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Constants</subject><subject>Curvature</subject><subject>Data Structures and Information Theory</subject><subject>Design</subject><subject>Design engineering</subject><subject>Diffusion</subject><subject>Fluid mechanics</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Registration</subject><subject>Software</subject><subject>Software Engineering</subject><subject>Studies</subject><subject>Survey</subject><subject>Theory of Computation</subject><subject>Topological manifolds</subject><subject>形状分析</subject><subject>扩散工艺</subject><subject>曲率</subject><subject>曲面离散</subject><subject>计算工具</subject><subject>计算算法</subject><subject>非线性</subject><subject>黎曼度量</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LAzEQxRdRUKt_gLdFETy4OpOkSfYo9RMEwY9zyGaztWu72yat1f_eKVuKePAyCcPvvce8JDlCuEAAdRkReQ4ZYD_DvtCZ3kr2UEvIhBL5Nv0BIMtp7Cb7MdYAXIEQe8npyyJ8-u-0bdLrUXTBz31Kq8o6nz6PnBult-N2eZDsVHYc_eH67SVvtzevg_vs8enuYXD1mDmBfJ6pikmhirzknnHGrFeAstRVWfZVxR1Dhk5WDnRR9tEWwgF3jmmL0mHui5L3kvPOd2mbyjZDU7eL0FCiqWP98VXHr8J4RkcCp0H4WYdPQztb-Dg3E7rBj8e28e0iGqR8UJImoSd_0I01SqUVWQpNFHaUC22MwVdmGkYTG74Ngln1bLqeDaWbVc9mpWGdJhLbDH345fyP6Hgd9N42wxnpNkmSKtRSMuQ_lwCIog</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>章敏 曾薇 郭任 罗锋 顾险峰</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, U.S.A.%School of Computing and Information Sciences, Florida International University, Miami, Florida 33199, U.S.A.%Department of Mathematics, 0regon State University, Corvallis, 0R 97331-4605, U.S.A.%Department of Mathematics, Rutgers University, Piscataway, NJ 08854, U.S.A</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150501</creationdate><title>Survey on Discrete Surface Ricci Flow</title><author>章敏 曾薇 郭任 罗锋 顾险峰</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7f2647b9d3e2322ae7016d8fdd57f3c2121c6fc08bd51ab4c03cc28a16c19ebd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Constants</topic><topic>Curvature</topic><topic>Data Structures and Information Theory</topic><topic>Design</topic><topic>Design engineering</topic><topic>Diffusion</topic><topic>Fluid mechanics</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Registration</topic><topic>Software</topic><topic>Software Engineering</topic><topic>Studies</topic><topic>Survey</topic><topic>Theory of Computation</topic><topic>Topological manifolds</topic><topic>形状分析</topic><topic>扩散工艺</topic><topic>曲率</topic><topic>曲面离散</topic><topic>计算工具</topic><topic>计算算法</topic><topic>非线性</topic><topic>黎曼度量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>章敏 曾薇 郭任 罗锋 顾险峰</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>章敏 曾薇 郭任 罗锋 顾险峰</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survey on Discrete Surface Ricci Flow</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>30</volume><issue>3</issue><spage>598</spage><epage>613</epage><pages>598-613</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Ricci flow deforms the Riemannian metric proportionally to the curvature, such that the curvature evolves according to a nonlinear heat diffusion process, and becomes constant eventually. Ricci flow is a powerful computational tool to design Riemannian metrics by prescribed curvatures This work surveys the theory of discrete surface Ricci flow registration and shape analysis. Surface Ricci flow has been generalized to the discrete setting. its computational algorithms, and the applications for surface</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11390-015-1548-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9000
ispartof Journal of computer science and technology, 2015-05, Vol.30 (3), p.598-613
issn 1000-9000
1860-4749
language eng
recordid cdi_wanfang_journals_jsjkxjsxb_e201503015
source Springer Nature - Complete Springer Journals
subjects Algorithms
Analysis
Artificial Intelligence
Computation
Computer Science
Constants
Curvature
Data Structures and Information Theory
Design
Design engineering
Diffusion
Fluid mechanics
Information Systems Applications (incl.Internet)
Mathematical analysis
Nonlinearity
Registration
Software
Software Engineering
Studies
Survey
Theory of Computation
Topological manifolds
形状分析
扩散工艺
曲率
曲面离散
计算工具
计算算法
非线性
黎曼度量
title Survey on Discrete Surface Ricci Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survey%20on%20Discrete%20Surface%20Ricci%20Flow&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=%E7%AB%A0%E6%95%8F%20%E6%9B%BE%E8%96%87%20%E9%83%AD%E4%BB%BB%20%E7%BD%97%E9%94%8B%20%E9%A1%BE%E9%99%A9%E5%B3%B0&rft.date=2015-05-01&rft.volume=30&rft.issue=3&rft.spage=598&rft.epage=613&rft.pages=598-613&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-015-1548-8&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e201503015%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1678715048&rft_id=info:pmid/&rft_cqvip_id=664786621&rft_wanfj_id=jsjkxjsxb_e201503015&rfr_iscdi=true