Prevention from Soft Errors via Architecture Elasticity
Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they hav...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2014, Vol.29 (2), p.247-254 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | 2 |
container_start_page | 247 |
container_title | Journal of computer science and technology |
container_volume | 29 |
creator | 尹一笑 陈云霁 郭崎 陈天石 |
description | Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity. In the light of a predictive model, we adapt the processor architectures h01istically and dynamically. The predictive model provides the ability to quickly and accurately predict the simulation target across different program execution phases on any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000 benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by 18.3% as compared with the static configuration processor. |
doi_str_mv | 10.1007/s11390-014-1427-8 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201402008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48941604</cqvip_id><wanfj_id>jsjkxjsxb_e201402008</wanfj_id><sourcerecordid>jsjkxjsxb_e201402008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-6d22696da5f935e2d6d6d106bc8f6160ec72271b81831629efc868abe6eba38f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdR8PkD3I24ceHovUmax1KkPkBQUNchkybtjO1Ek6mPf2_KFBEXEkju4jvn3JyiOEQ4QwBxnhCpggqQVciIqORGsYOSQ8UEU5t5BoBK5Wu72E2pBaACGNspxEN0767rm9CVPoZF-Rh8X45jDDGV740pL6KdNb2z_TK6cjw3qW9s03_tF1vezJM7WL97xfPV-Onyprq7v769vLirLOWsr_iEEK74xIy8oiNHJjwfBF5b6TlycFYQIrCWKClyopy3kktTO-5qQ6Wne8Xp4PthOm-6qW7DMnY5Ubepffls02etHcnfBgIgM34y4K8xvC1d6vWiSdbN56ZzYZk0jggoCVxgRo__oD_WOKIMmRJMZAoHysaQUnRev8ZmYeKXRtCr5vXQvM4r6FXzerUEGTQps93UxV_O_4iO1kGz0E3fsu4niUnFcleMfgObF497</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534149747</pqid></control><display><type>article</type><title>Prevention from Soft Errors via Architecture Elasticity</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>尹一笑 陈云霁 郭崎 陈天石</creator><creatorcontrib>尹一笑 陈云霁 郭崎 陈天石</creatorcontrib><description>Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity. In the light of a predictive model, we adapt the processor architectures h01istically and dynamically. The predictive model provides the ability to quickly and accurately predict the simulation target across different program execution phases on any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000 benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by 18.3% as compared with the static configuration processor.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-014-1427-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Architecture ; Architecture (computers) ; Artificial Intelligence ; Computer Science ; Computer simulation ; Computers ; Cosmic rays ; Data Structures and Information Theory ; Elasticity ; Energy ; Information Systems Applications (incl.Internet) ; Integrated circuits ; Machine learning ; Mathematical models ; Neural networks ; Phases ; Prevention ; Processors ; Regular Paper ; Science ; Simulation ; Soft errors ; Software Engineering ; Studies ; Theory of Computation ; Transistors ; 人工神经网络模型 ; 处理器 ; 弹性 ; 架构 ; 特征尺寸 ; 阈值电压 ; 静态配置 ; 预测模型</subject><ispartof>Journal of computer science and technology, 2014, Vol.29 (2), p.247-254</ispartof><rights>Springer Science+Business Media New York & Science Press, China 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-6d22696da5f935e2d6d6d106bc8f6160ec72271b81831629efc868abe6eba38f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-014-1427-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-014-1427-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>尹一笑 陈云霁 郭崎 陈天石</creatorcontrib><title>Prevention from Soft Errors via Architecture Elasticity</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity. In the light of a predictive model, we adapt the processor architectures h01istically and dynamically. The predictive model provides the ability to quickly and accurately predict the simulation target across different program execution phases on any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000 benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by 18.3% as compared with the static configuration processor.</description><subject>Architecture</subject><subject>Architecture (computers)</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Cosmic rays</subject><subject>Data Structures and Information Theory</subject><subject>Elasticity</subject><subject>Energy</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Phases</subject><subject>Prevention</subject><subject>Processors</subject><subject>Regular Paper</subject><subject>Science</subject><subject>Simulation</subject><subject>Soft errors</subject><subject>Software Engineering</subject><subject>Studies</subject><subject>Theory of Computation</subject><subject>Transistors</subject><subject>人工神经网络模型</subject><subject>处理器</subject><subject>弹性</subject><subject>架构</subject><subject>特征尺寸</subject><subject>阈值电压</subject><subject>静态配置</subject><subject>预测模型</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhQdR8PkD3I24ceHovUmax1KkPkBQUNchkybtjO1Ek6mPf2_KFBEXEkju4jvn3JyiOEQ4QwBxnhCpggqQVciIqORGsYOSQ8UEU5t5BoBK5Wu72E2pBaACGNspxEN0767rm9CVPoZF-Rh8X45jDDGV740pL6KdNb2z_TK6cjw3qW9s03_tF1vezJM7WL97xfPV-Onyprq7v769vLirLOWsr_iEEK74xIy8oiNHJjwfBF5b6TlycFYQIrCWKClyopy3kktTO-5qQ6Wne8Xp4PthOm-6qW7DMnY5Ubepffls02etHcnfBgIgM34y4K8xvC1d6vWiSdbN56ZzYZk0jggoCVxgRo__oD_WOKIMmRJMZAoHysaQUnRev8ZmYeKXRtCr5vXQvM4r6FXzerUEGTQps93UxV_O_4iO1kGz0E3fsu4niUnFcleMfgObF497</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>尹一笑 陈云霁 郭崎 陈天石</creator><general>Springer US</general><general>Springer Nature B.V</general><general>University of Chinese Academy of Sciences, Beijing 100049, China</general><general>State Key Lab of Computer Architecture and Microprocessor Research Center, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China</general><general>Loongson Technology Corporation Limited, Beijing 100190, China%State Key Lab of Computer Architecture and Microprocessor Research Center, Institute of Computing Technology Chinese Academy of Sciences, Beijing 100190, China%IBM Research-China, Beijing 100193, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SP</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2014</creationdate><title>Prevention from Soft Errors via Architecture Elasticity</title><author>尹一笑 陈云霁 郭崎 陈天石</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-6d22696da5f935e2d6d6d106bc8f6160ec72271b81831629efc868abe6eba38f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Architecture</topic><topic>Architecture (computers)</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Cosmic rays</topic><topic>Data Structures and Information Theory</topic><topic>Elasticity</topic><topic>Energy</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Phases</topic><topic>Prevention</topic><topic>Processors</topic><topic>Regular Paper</topic><topic>Science</topic><topic>Simulation</topic><topic>Soft errors</topic><topic>Software Engineering</topic><topic>Studies</topic><topic>Theory of Computation</topic><topic>Transistors</topic><topic>人工神经网络模型</topic><topic>处理器</topic><topic>弹性</topic><topic>架构</topic><topic>特征尺寸</topic><topic>阈值电压</topic><topic>静态配置</topic><topic>预测模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>尹一笑 陈云霁 郭崎 陈天石</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Electronics & Communications Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>尹一笑 陈云霁 郭崎 陈天石</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevention from Soft Errors via Architecture Elasticity</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2014</date><risdate>2014</risdate><volume>29</volume><issue>2</issue><spage>247</spage><epage>254</epage><pages>247-254</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Due to the decreasing threshold voltages, shrinking feature size, as well as the exponential growth of on-chip transistors, modern processors are increasingly vulnerable to soft errors. However, traditional mechanisms of soft error mitigation take actions to deal with soft errors only after they have been detected. Instead of the passive responses, this paper proposes a novel mechanism which proactively prevents from the occurrence of soft errors via architecture elasticity. In the light of a predictive model, we adapt the processor architectures h01istically and dynamically. The predictive model provides the ability to quickly and accurately predict the simulation target across different program execution phases on any architecture configurations by leveraging an artificial neural network model. Experimental results on SPEC CPU 2000 benchmarks show that our method inherently reduces the soft error rate by 33.2% and improves the energy efficiency by 18.3% as compared with the static configuration processor.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-014-1427-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2014, Vol.29 (2), p.247-254 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e201402008 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Architecture Architecture (computers) Artificial Intelligence Computer Science Computer simulation Computers Cosmic rays Data Structures and Information Theory Elasticity Energy Information Systems Applications (incl.Internet) Integrated circuits Machine learning Mathematical models Neural networks Phases Prevention Processors Regular Paper Science Simulation Soft errors Software Engineering Studies Theory of Computation Transistors 人工神经网络模型 处理器 弹性 架构 特征尺寸 阈值电压 静态配置 预测模型 |
title | Prevention from Soft Errors via Architecture Elasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T20%3A13%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevention%20from%20Soft%20Errors%20via%20Architecture%20Elasticity&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=%E5%B0%B9%E4%B8%80%E7%AC%91%20%E9%99%88%E4%BA%91%E9%9C%81%20%E9%83%AD%E5%B4%8E%20%E9%99%88%E5%A4%A9%E7%9F%B3&rft.date=2014&rft.volume=29&rft.issue=2&rft.spage=247&rft.epage=254&rft.pages=247-254&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-014-1427-8&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e201402008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534149747&rft_id=info:pmid/&rft_cqvip_id=48941604&rft_wanfj_id=jsjkxjsxb_e201402008&rfr_iscdi=true |