Harmonic Field Based Volume Model Construction from Triangle Soup
Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal structures, or self-intersections. In the extreme case, we may b...
Gespeichert in:
Veröffentlicht in: | Journal of computer science and technology 2010-05, Vol.25 (3), p.562-571 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | 3 |
container_start_page | 562 |
container_title | Journal of computer science and technology |
container_volume | 25 |
creator | 沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin |
description | Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal structures, or self-intersections. In the extreme case, we may be simply presented with a set of arbitrarily connected triangles, a "triangle soup". This paper presents a novel method to generate volume data represented as an octree from a general 3D triangle soup. Our motivation is the Faraday cage from electrostatics. We consider the input triangles as forming an approximately closed Faraday cage, and set its potential to zero. We then introduce a second conductor surrounding it, and give it a higher constant potential. Due to the electrostatic shielding effect, the resulting electric field approximately lies in that part of space outside the shape implicitly determined by the triangle soup. Unlike previous approaches, our method is insensitive to small holes and internal structures, and is observed to generate volumes with low topological complexity. While our approach is somewhat limited in accuracy by the requirement of filling holes, it is still useful, for example, as a preprocessing step for applications such as mesh repair and skeleton extraction. |
doi_str_mv | 10.1007/s11390-010-9345-x |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201003015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33812481</cqvip_id><wanfj_id>jsjkxjsxb_e201003015</wanfj_id><sourcerecordid>jsjkxjsxb_e201003015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-56bfcd40d4d0f8de515573e3babb365fbce343fc190a394136cafab8d28e7c2e3</originalsourceid><addsrcrecordid>eNp9kUtP7DAMhSsEEs8fwK5iw4beazfpNF3CiIErgVjw2EZp6gwtbTIkUzH8e4KKuBILNnEkf-fY8kmSY4Q_CFD-DYisggwQsorxIttsJXsoZpDxklfb8Q8QO_HZTfZD6ABYCZzvJefXyg_OtjpdtNQ36YUK1KRPrh8HSm9dQ306dzas_ajXrbOp8W5IH3yr7LKn9N6Nq8Nkx6g-0NFXPUgeF5cP8-vs5u7q3_z8JtMccZ0Vs9rohkPDGzCioQKLomTEalXXbFaYWhPjzGisQLGKI5tpZVQtmlxQqXNiB8nZ5PumrInjZedGb-NE2YXuZdOFTS0pjwcABlhE_HTCV969jhTWcmiDpr5XltwYZAVlJQSKMpInP8hvZ1HmUHEhIEI4Qdq7EDwZufLtoPy7RJCfCcgpARkXkJ8JyE3U5JMmRNYuyf83_k30tY1-dnb5GnWyVvrFtD1JxgTmXCD7ALfelCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>872094880</pqid></control><display><type>article</type><title>Harmonic Field Based Volume Model Construction from Triangle Soup</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</creator><creatorcontrib>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</creatorcontrib><description>Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal structures, or self-intersections. In the extreme case, we may be simply presented with a set of arbitrarily connected triangles, a "triangle soup". This paper presents a novel method to generate volume data represented as an octree from a general 3D triangle soup. Our motivation is the Faraday cage from electrostatics. We consider the input triangles as forming an approximately closed Faraday cage, and set its potential to zero. We then introduce a second conductor surrounding it, and give it a higher constant potential. Due to the electrostatic shielding effect, the resulting electric field approximately lies in that part of space outside the shape implicitly determined by the triangle soup. Unlike previous approaches, our method is insensitive to small holes and internal structures, and is observed to generate volumes with low topological complexity. While our approach is somewhat limited in accuracy by the requirement of filling holes, it is still useful, for example, as a preprocessing step for applications such as mesh repair and skeleton extraction.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-010-9345-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Cages ; Computer Science ; Construction ; Data Structures and Information Theory ; Electric fields ; Electric potential ; Electrostatic shielding ; Electrostatics ; Faraday cage ; Finite element method ; Geometry ; Information Systems Applications (incl.Internet) ; Mathematical models ; Methods ; Octrees ; Software Engineering ; Soups ; Theory of Computation ; Three dimensional ; Triangles ; 三角网格 ; 内部结构 ; 模型构建 ; 法拉第笼 ; 网格转换 ; 谐波场 ; 静电屏蔽效应 ; 骨架提取</subject><ispartof>Journal of computer science and technology, 2010-05, Vol.25 (3), p.562-571</ispartof><rights>Springer 2010</rights><rights>Springer 2010.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-56bfcd40d4d0f8de515573e3babb365fbce343fc190a394136cafab8d28e7c2e3</citedby><cites>FETCH-LOGICAL-c411t-56bfcd40d4d0f8de515573e3babb365fbce343fc190a394136cafab8d28e7c2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85226X/85226X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11390-010-9345-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11390-010-9345-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</creatorcontrib><title>Harmonic Field Based Volume Model Construction from Triangle Soup</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><addtitle>Journal of Computer Science and Technology</addtitle><description>Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal structures, or self-intersections. In the extreme case, we may be simply presented with a set of arbitrarily connected triangles, a "triangle soup". This paper presents a novel method to generate volume data represented as an octree from a general 3D triangle soup. Our motivation is the Faraday cage from electrostatics. We consider the input triangles as forming an approximately closed Faraday cage, and set its potential to zero. We then introduce a second conductor surrounding it, and give it a higher constant potential. Due to the electrostatic shielding effect, the resulting electric field approximately lies in that part of space outside the shape implicitly determined by the triangle soup. Unlike previous approaches, our method is insensitive to small holes and internal structures, and is observed to generate volumes with low topological complexity. While our approach is somewhat limited in accuracy by the requirement of filling holes, it is still useful, for example, as a preprocessing step for applications such as mesh repair and skeleton extraction.</description><subject>Artificial Intelligence</subject><subject>Cages</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Data Structures and Information Theory</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrostatic shielding</subject><subject>Electrostatics</subject><subject>Faraday cage</subject><subject>Finite element method</subject><subject>Geometry</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Octrees</subject><subject>Software Engineering</subject><subject>Soups</subject><subject>Theory of Computation</subject><subject>Three dimensional</subject><subject>Triangles</subject><subject>三角网格</subject><subject>内部结构</subject><subject>模型构建</subject><subject>法拉第笼</subject><subject>网格转换</subject><subject>谐波场</subject><subject>静电屏蔽效应</subject><subject>骨架提取</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP7DAMhSsEEs8fwK5iw4beazfpNF3CiIErgVjw2EZp6gwtbTIkUzH8e4KKuBILNnEkf-fY8kmSY4Q_CFD-DYisggwQsorxIttsJXsoZpDxklfb8Q8QO_HZTfZD6ABYCZzvJefXyg_OtjpdtNQ36YUK1KRPrh8HSm9dQ306dzas_ajXrbOp8W5IH3yr7LKn9N6Nq8Nkx6g-0NFXPUgeF5cP8-vs5u7q3_z8JtMccZ0Vs9rohkPDGzCioQKLomTEalXXbFaYWhPjzGisQLGKI5tpZVQtmlxQqXNiB8nZ5PumrInjZedGb-NE2YXuZdOFTS0pjwcABlhE_HTCV969jhTWcmiDpr5XltwYZAVlJQSKMpInP8hvZ1HmUHEhIEI4Qdq7EDwZufLtoPy7RJCfCcgpARkXkJ8JyE3U5JMmRNYuyf83_k30tY1-dnb5GnWyVvrFtD1JxgTmXCD7ALfelCA</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Tsinghua National Laboratory for Information Science and Technology Department of Computer Science and Technology,Tsinghua University,Beijing 100084,China%School of Computer Science,Cardiff University,Cardiff,U.K</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20100501</creationdate><title>Harmonic Field Based Volume Model Construction from Triangle Soup</title><author>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-56bfcd40d4d0f8de515573e3babb365fbce343fc190a394136cafab8d28e7c2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial Intelligence</topic><topic>Cages</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Data Structures and Information Theory</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrostatic shielding</topic><topic>Electrostatics</topic><topic>Faraday cage</topic><topic>Finite element method</topic><topic>Geometry</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Octrees</topic><topic>Software Engineering</topic><topic>Soups</topic><topic>Theory of Computation</topic><topic>Three dimensional</topic><topic>Triangles</topic><topic>三角网格</topic><topic>内部结构</topic><topic>模型构建</topic><topic>法拉第笼</topic><topic>网格转换</topic><topic>谐波场</topic><topic>静电屏蔽效应</topic><topic>骨架提取</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>沈超慧 张国鑫 来煜坤 胡事民 Ralph R. Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harmonic Field Based Volume Model Construction from Triangle Soup</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><addtitle>Journal of Computer Science and Technology</addtitle><date>2010-05-01</date><risdate>2010</risdate><volume>25</volume><issue>3</issue><spage>562</spage><epage>571</epage><pages>562-571</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Surface triangle meshes and volume data are two commonly used representations of digital geometry. Converting from triangle meshes to volume data is challenging, since triangle meshes often contain defects such as small holes, internal structures, or self-intersections. In the extreme case, we may be simply presented with a set of arbitrarily connected triangles, a "triangle soup". This paper presents a novel method to generate volume data represented as an octree from a general 3D triangle soup. Our motivation is the Faraday cage from electrostatics. We consider the input triangles as forming an approximately closed Faraday cage, and set its potential to zero. We then introduce a second conductor surrounding it, and give it a higher constant potential. Due to the electrostatic shielding effect, the resulting electric field approximately lies in that part of space outside the shape implicitly determined by the triangle soup. Unlike previous approaches, our method is insensitive to small holes and internal structures, and is observed to generate volumes with low topological complexity. While our approach is somewhat limited in accuracy by the requirement of filling holes, it is still useful, for example, as a preprocessing step for applications such as mesh repair and skeleton extraction.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-010-9345-x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2010-05, Vol.25 (3), p.562-571 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e201003015 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Artificial Intelligence Cages Computer Science Construction Data Structures and Information Theory Electric fields Electric potential Electrostatic shielding Electrostatics Faraday cage Finite element method Geometry Information Systems Applications (incl.Internet) Mathematical models Methods Octrees Software Engineering Soups Theory of Computation Three dimensional Triangles 三角网格 内部结构 模型构建 法拉第笼 网格转换 谐波场 静电屏蔽效应 骨架提取 |
title | Harmonic Field Based Volume Model Construction from Triangle Soup |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harmonic%20Field%20Based%20Volume%20Model%20Construction%20from%20Triangle%20Soup&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=%E6%B2%88%E8%B6%85%E6%85%A7%20%E5%BC%A0%E5%9B%BD%E9%91%AB%20%E6%9D%A5%E7%85%9C%E5%9D%A4%20%E8%83%A1%E4%BA%8B%E6%B0%91%20Ralph%20R.%20Martin&rft.date=2010-05-01&rft.volume=25&rft.issue=3&rft.spage=562&rft.epage=571&rft.pages=562-571&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-010-9345-x&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e201003015%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=872094880&rft_id=info:pmid/&rft_cqvip_id=33812481&rft_wanfj_id=jsjkxjsxb_e201003015&rfr_iscdi=true |