基于合成图像和Xception改进模型的安卓恶意家族分类方法
TP309; 针对安卓恶意家族检测领域存在的代码可视化方法构造的信息不充分、分类效果受数据集数量影响大、分类准确率低等问题,提出了一种基于多特征文件合成图像和Xception改进模型的安卓恶意家族分类方法.首先,选用3个特征文件对应RGB多通道合成彩色图像;然后,改进Xception模型引入focal loss函数,缓解由样本不均衡分布带来的负面影响;最后,将注意力机制融合至改进模型,从不同维度提取恶意代码图像特征,提升了模型的分类效果.实验结果表明,所提方法合成的恶意代码图像包含的特征更丰富,相比主流的恶意家族分类方法准确率更高,且对于数量分布不平衡的数据集具备更好的分类效果....
Gespeichert in:
Veröffentlicht in: | 计算机科学 2023, Vol.50 (4), p.351-358 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 358 |
---|---|
container_issue | 4 |
container_start_page | 351 |
container_title | 计算机科学 |
container_volume | 50 |
creator | 于兴崭 芦天亮 杜彦辉 王曦锐 杨成 |
description | TP309; 针对安卓恶意家族检测领域存在的代码可视化方法构造的信息不充分、分类效果受数据集数量影响大、分类准确率低等问题,提出了一种基于多特征文件合成图像和Xception改进模型的安卓恶意家族分类方法.首先,选用3个特征文件对应RGB多通道合成彩色图像;然后,改进Xception模型引入focal loss函数,缓解由样本不均衡分布带来的负面影响;最后,将注意力机制融合至改进模型,从不同维度提取恶意代码图像特征,提升了模型的分类效果.实验结果表明,所提方法合成的恶意代码图像包含的特征更丰富,相比主流的恶意家族分类方法准确率更高,且对于数量分布不平衡的数据集具备更好的分类效果. |
doi_str_mv | 10.11896/jsjkx.220300200 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_jsjkx202304041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>jsjkx202304041</wanfj_id><sourcerecordid>jsjkx202304041</sourcerecordid><originalsourceid>FETCH-wanfang_journals_jsjkx2023040413</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNLSwNNPPKs7KrtAzMjIwNjAwMjBgYeA0BDJ0DY3NIzgYeIuLM5MMjIzNTIDQkJPB6-n8XU929T2d0PGsY8LT2fueNvc_ndQTkZxaUJKZn_dsys4X-2c_W7Hw6bzu57Nanq7rfNo7-Vnjtmct_U_XbXs2vf9pR9vzjbufTdv5bPNUHgbWtMSc4lReKM3NoObmGuLsoVuemJeWmJcen5VfWpQHlIkHu9AI6AoDEwMTQ2OiFQIAOCtbvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>基于合成图像和Xception改进模型的安卓恶意家族分类方法</title><source>DOAJ Directory of Open Access Journals</source><creator>于兴崭 ; 芦天亮 ; 杜彦辉 ; 王曦锐 ; 杨成</creator><creatorcontrib>于兴崭 ; 芦天亮 ; 杜彦辉 ; 王曦锐 ; 杨成</creatorcontrib><description>TP309; 针对安卓恶意家族检测领域存在的代码可视化方法构造的信息不充分、分类效果受数据集数量影响大、分类准确率低等问题,提出了一种基于多特征文件合成图像和Xception改进模型的安卓恶意家族分类方法.首先,选用3个特征文件对应RGB多通道合成彩色图像;然后,改进Xception模型引入focal loss函数,缓解由样本不均衡分布带来的负面影响;最后,将注意力机制融合至改进模型,从不同维度提取恶意代码图像特征,提升了模型的分类效果.实验结果表明,所提方法合成的恶意代码图像包含的特征更丰富,相比主流的恶意家族分类方法准确率更高,且对于数量分布不平衡的数据集具备更好的分类效果.</description><identifier>ISSN: 1002-137X</identifier><identifier>DOI: 10.11896/jsjkx.220300200</identifier><language>chi</language><publisher>中国人民公安大学信息网络安全学院 北京100038</publisher><ispartof>计算机科学, 2023, Vol.50 (4), p.351-358</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkx/jsjkx.jpg</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>于兴崭</creatorcontrib><creatorcontrib>芦天亮</creatorcontrib><creatorcontrib>杜彦辉</creatorcontrib><creatorcontrib>王曦锐</creatorcontrib><creatorcontrib>杨成</creatorcontrib><title>基于合成图像和Xception改进模型的安卓恶意家族分类方法</title><title>计算机科学</title><description>TP309; 针对安卓恶意家族检测领域存在的代码可视化方法构造的信息不充分、分类效果受数据集数量影响大、分类准确率低等问题,提出了一种基于多特征文件合成图像和Xception改进模型的安卓恶意家族分类方法.首先,选用3个特征文件对应RGB多通道合成彩色图像;然后,改进Xception模型引入focal loss函数,缓解由样本不均衡分布带来的负面影响;最后,将注意力机制融合至改进模型,从不同维度提取恶意代码图像特征,提升了模型的分类效果.实验结果表明,所提方法合成的恶意代码图像包含的特征更丰富,相比主流的恶意家族分类方法准确率更高,且对于数量分布不平衡的数据集具备更好的分类效果.</description><issn>1002-137X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpjYJAwNNAzNLSwNNPPKs7KrtAzMjIwNjAwMjBgYeA0BDJ0DY3NIzgYeIuLM5MMjIzNTIDQkJPB6-n8XU929T2d0PGsY8LT2fueNvc_ndQTkZxaUJKZn_dsys4X-2c_W7Hw6bzu57Nanq7rfNo7-Vnjtmct_U_XbXs2vf9pR9vzjbufTdv5bPNUHgbWtMSc4lReKM3NoObmGuLsoVuemJeWmJcen5VfWpQHlIkHu9AI6AoDEwMTQ2OiFQIAOCtbvA</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>于兴崭</creator><creator>芦天亮</creator><creator>杜彦辉</creator><creator>王曦锐</creator><creator>杨成</creator><general>中国人民公安大学信息网络安全学院 北京100038</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2023</creationdate><title>基于合成图像和Xception改进模型的安卓恶意家族分类方法</title><author>于兴崭 ; 芦天亮 ; 杜彦辉 ; 王曦锐 ; 杨成</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_jsjkx2023040413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>于兴崭</creatorcontrib><creatorcontrib>芦天亮</creatorcontrib><creatorcontrib>杜彦辉</creatorcontrib><creatorcontrib>王曦锐</creatorcontrib><creatorcontrib>杨成</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>计算机科学</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>于兴崭</au><au>芦天亮</au><au>杜彦辉</au><au>王曦锐</au><au>杨成</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>基于合成图像和Xception改进模型的安卓恶意家族分类方法</atitle><jtitle>计算机科学</jtitle><date>2023</date><risdate>2023</risdate><volume>50</volume><issue>4</issue><spage>351</spage><epage>358</epage><pages>351-358</pages><issn>1002-137X</issn><abstract>TP309; 针对安卓恶意家族检测领域存在的代码可视化方法构造的信息不充分、分类效果受数据集数量影响大、分类准确率低等问题,提出了一种基于多特征文件合成图像和Xception改进模型的安卓恶意家族分类方法.首先,选用3个特征文件对应RGB多通道合成彩色图像;然后,改进Xception模型引入focal loss函数,缓解由样本不均衡分布带来的负面影响;最后,将注意力机制融合至改进模型,从不同维度提取恶意代码图像特征,提升了模型的分类效果.实验结果表明,所提方法合成的恶意代码图像包含的特征更丰富,相比主流的恶意家族分类方法准确率更高,且对于数量分布不平衡的数据集具备更好的分类效果.</abstract><pub>中国人民公安大学信息网络安全学院 北京100038</pub><doi>10.11896/jsjkx.220300200</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-137X |
ispartof | 计算机科学, 2023, Vol.50 (4), p.351-358 |
issn | 1002-137X |
language | chi |
recordid | cdi_wanfang_journals_jsjkx202304041 |
source | DOAJ Directory of Open Access Journals |
title | 基于合成图像和Xception改进模型的安卓恶意家族分类方法 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%90%88%E6%88%90%E5%9B%BE%E5%83%8F%E5%92%8CXception%E6%94%B9%E8%BF%9B%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%AE%89%E5%8D%93%E6%81%B6%E6%84%8F%E5%AE%B6%E6%97%8F%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6&rft.au=%E4%BA%8E%E5%85%B4%E5%B4%AD&rft.date=2023&rft.volume=50&rft.issue=4&rft.spage=351&rft.epage=358&rft.pages=351-358&rft.issn=1002-137X&rft_id=info:doi/10.11896/jsjkx.220300200&rft_dat=%3Cwanfang_jour%3Ejsjkx202304041%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=jsjkx202304041&rfr_iscdi=true |