Road network extraction from high resolution satellite images

In this paper, an approach of roads network extraction from high resolution satellite images is presented. First, the approach extracts road surface from satellite image using one-class support vector machine (SVM). Second, the road topology is built from the road surface. The last output of the app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:计算机辅助绘图设计与制造(英文版) 2016, Vol.26 (2), p.1-7
1. Verfasser: Li Gang Lai Shunnan Li Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an approach of roads network extraction from high resolution satellite images is presented. First, the approach extracts road surface from satellite image using one-class support vector machine (SVM). Second, the road topology is built from the road surface. The last output of the approach is a series of road segments which is represented by a sequence of points as well as the topological relations among them. The approach includes four steps. In the first step one-class support vector machine is used for classifying pixel of the satellite images to road class or non-road class. In the second step filling holes and connecting gaps for the SVM's classification result is applied through mathematical morphology close operation. In the third step the road segment is extracted by a series of operations which include skeletonization, thin, branch pruning and road segmentation. In the last step a geometrical adjustment process is applied through analyzing the road segment curvature. The experiment results demonstrate its robustness and viability on extracting road network from high resolution satellite images.
ISSN:1003-4951