Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment
Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency. Uniform design was applied to determine the combination of target temperature (110-210°C), microwave holding time (1-51 mi...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2011-01, Vol.23 (8), p.1257-1265 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency. Uniform design was applied to determine the combination of target temperature (110-210°C), microwave holding time (1-51 min), and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization. Maximum solubilization ratio (85.1%) of VSS was observed at 210°C with 0.2 g-NaOH/g-SS and 35 min holding time. The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP). Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge. The highest CMP was a 27% improvement over the control. In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge, a semi-continuous thermophilic reactor fed with pretreated TWAS without neutralization (at 170~C with 1 min holding time and 0.05 g NaOH/g SS) was stable and functioned well, with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%, respectively, which were higher than those of the control system. Additionally, methane yields (L@STP/g-CODaded, at standard temperature and pressure (STP) conditions of 0°C and 101.325 kPa) and (L@STP/g VSadad) increased by 17% and 13%, respectively, comoared to the control reactor. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/s1001-0742(10)60561-x |