Moisture distribution in sludges based on different testing methods
Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DS...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2011-01, Vol.23 (5), p.875-880 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 880 |
---|---|
container_issue | 5 |
container_start_page | 875 |
container_title | Journal of environmental sciences (China) |
container_volume | 23 |
creator | Deng, Wenyi Li, Xiaodong Yan, Jianhua Wang, Fei Chi, Yong Cen, Kefa |
description | Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented. The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test. |
doi_str_mv | 10.1016/S1001-0742(10)60518-9 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jes_e201105025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37881520</cqvip_id><wanfj_id>jes_e201105025</wanfj_id><els_id>S1001074210605189</els_id><sourcerecordid>jes_e201105025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-37719b14dc7351966137a779fda14433d4f3a02eddc81569ff80f45a5d1960333</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEoqXwE4D0AuUQmLHjrxNCK76kIg6lZ8sb26lXu3ZrJyD-Pd5m2yM9jWU9M_OOnqZ5ifAeAfmHCwTADkRPzhDecWAoO_WoOUYpZCcogcf1fYccNc9K2QBAz4A9bY4ICgXA6XGz-pFCmebsWltrDut5Cim2IbZlO9vRlXZtirNt_bPBe5ddnNrJlSnEsd256SrZ8rx54s22uBeHetJcfvn8a_WtO__59fvq03k3MISpo0KgWmNvB0EZKs6RCiOE8tZg31Nqe08NEGftIJFx5b0E3zPDbIWBUnrSvFnm_jHRmzjqTZpzrBv1xhXtCCACA8Iq-HYBr3O6mWtYvQtlcNutiS7NRUvFCSW8Fw-TQnEhGZWVPPsviaKexxmI_VC2oENOpWTn9XUOO5P_agS9l6dv5em9mf3XrTytat-rw4p5vXP2vuvOVgVeL4A3SZsxh6IvL-rZDICgBIWV-LgQrnr4HVzWZQguDs6G7IZJ2xQeDHF6CH-V4nhTNd_noEJWMQToP35Bunw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777165077</pqid></control><display><type>article</type><title>Moisture distribution in sludges based on different testing methods</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>Deng, Wenyi ; Li, Xiaodong ; Yan, Jianhua ; Wang, Fei ; Chi, Yong ; Cen, Kefa</creator><creatorcontrib>Deng, Wenyi ; Li, Xiaodong ; Yan, Jianhua ; Wang, Fei ; Chi, Yong ; Cen, Kefa</creatorcontrib><description>Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented. The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.</description><identifier>ISSN: 1001-0742</identifier><identifier>EISSN: 1878-7320</identifier><identifier>DOI: 10.1016/S1001-0742(10)60518-9</identifier><identifier>PMID: 21790063</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>bond strength ; Bonding strength ; bound water ; calorimetry ; Calorimetry, Differential Scanning ; Chemistry Techniques, Analytical - methods ; Cities ; Coloring Agents ; Desiccation ; Drying ; dyeing ; Humidity ; Industrial Waste - analysis ; Interstitials ; Moisture ; Moisture content ; moisture distribution ; Printing ; pulp and paper sludge ; Sewage - chemistry ; sewage sludge ; Sludge ; Surface water ; Temperature ; thermal analysis ; Thermogravimetry ; Water - chemistry ; Water activity ; 含水量 ; 城市污水污泥 ; 基础 ; 差示扫描量热 ; 水分分布 ; 活性测试 ; 测试方法 ; 粘结强度</subject><ispartof>Journal of environmental sciences (China), 2011-01, Vol.23 (5), p.875-880</ispartof><rights>2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-37719b14dc7351966137a779fda14433d4f3a02eddc81569ff80f45a5d1960333</citedby><cites>FETCH-LOGICAL-c510t-37719b14dc7351966137a779fda14433d4f3a02eddc81569ff80f45a5d1960333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85265X/85265X.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1001074210605189$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21790063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Wenyi</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chi, Yong</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><title>Moisture distribution in sludges based on different testing methods</title><title>Journal of environmental sciences (China)</title><addtitle>Journal of Environmental Sciences</addtitle><description>Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented. The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.</description><subject>bond strength</subject><subject>Bonding strength</subject><subject>bound water</subject><subject>calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Cities</subject><subject>Coloring Agents</subject><subject>Desiccation</subject><subject>Drying</subject><subject>dyeing</subject><subject>Humidity</subject><subject>Industrial Waste - analysis</subject><subject>Interstitials</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>moisture distribution</subject><subject>Printing</subject><subject>pulp and paper sludge</subject><subject>Sewage - chemistry</subject><subject>sewage sludge</subject><subject>Sludge</subject><subject>Surface water</subject><subject>Temperature</subject><subject>thermal analysis</subject><subject>Thermogravimetry</subject><subject>Water - chemistry</subject><subject>Water activity</subject><subject>含水量</subject><subject>城市污水污泥</subject><subject>基础</subject><subject>差示扫描量热</subject><subject>水分分布</subject><subject>活性测试</subject><subject>测试方法</subject><subject>粘结强度</subject><issn>1001-0742</issn><issn>1878-7320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhiMEoqXwE4D0AuUQmLHjrxNCK76kIg6lZ8sb26lXu3ZrJyD-Pd5m2yM9jWU9M_OOnqZ5ifAeAfmHCwTADkRPzhDecWAoO_WoOUYpZCcogcf1fYccNc9K2QBAz4A9bY4ICgXA6XGz-pFCmebsWltrDut5Cim2IbZlO9vRlXZtirNt_bPBe5ddnNrJlSnEsd256SrZ8rx54s22uBeHetJcfvn8a_WtO__59fvq03k3MISpo0KgWmNvB0EZKs6RCiOE8tZg31Nqe08NEGftIJFx5b0E3zPDbIWBUnrSvFnm_jHRmzjqTZpzrBv1xhXtCCACA8Iq-HYBr3O6mWtYvQtlcNutiS7NRUvFCSW8Fw-TQnEhGZWVPPsviaKexxmI_VC2oENOpWTn9XUOO5P_agS9l6dv5em9mf3XrTytat-rw4p5vXP2vuvOVgVeL4A3SZsxh6IvL-rZDICgBIWV-LgQrnr4HVzWZQguDs6G7IZJ2xQeDHF6CH-V4nhTNd_noEJWMQToP35Bunw</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Deng, Wenyi</creator><creator>Li, Xiaodong</creator><creator>Yan, Jianhua</creator><creator>Wang, Fei</creator><creator>Chi, Yong</creator><creator>Cen, Kefa</creator><general>Elsevier B.V</general><general>School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China%State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhefiang University, Hangzhou 310027, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110101</creationdate><title>Moisture distribution in sludges based on different testing methods</title><author>Deng, Wenyi ; Li, Xiaodong ; Yan, Jianhua ; Wang, Fei ; Chi, Yong ; Cen, Kefa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-37719b14dc7351966137a779fda14433d4f3a02eddc81569ff80f45a5d1960333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>bond strength</topic><topic>Bonding strength</topic><topic>bound water</topic><topic>calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Cities</topic><topic>Coloring Agents</topic><topic>Desiccation</topic><topic>Drying</topic><topic>dyeing</topic><topic>Humidity</topic><topic>Industrial Waste - analysis</topic><topic>Interstitials</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>moisture distribution</topic><topic>Printing</topic><topic>pulp and paper sludge</topic><topic>Sewage - chemistry</topic><topic>sewage sludge</topic><topic>Sludge</topic><topic>Surface water</topic><topic>Temperature</topic><topic>thermal analysis</topic><topic>Thermogravimetry</topic><topic>Water - chemistry</topic><topic>Water activity</topic><topic>含水量</topic><topic>城市污水污泥</topic><topic>基础</topic><topic>差示扫描量热</topic><topic>水分分布</topic><topic>活性测试</topic><topic>测试方法</topic><topic>粘结强度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Wenyi</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><creatorcontrib>Yan, Jianhua</creatorcontrib><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Chi, Yong</creatorcontrib><creatorcontrib>Cen, Kefa</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of environmental sciences (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Wenyi</au><au>Li, Xiaodong</au><au>Yan, Jianhua</au><au>Wang, Fei</au><au>Chi, Yong</au><au>Cen, Kefa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moisture distribution in sludges based on different testing methods</atitle><jtitle>Journal of environmental sciences (China)</jtitle><addtitle>Journal of Environmental Sciences</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>23</volume><issue>5</issue><spage>875</spage><epage>880</epage><pages>875-880</pages><issn>1001-0742</issn><eissn>1878-7320</eissn><abstract>Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented. The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>21790063</pmid><doi>10.1016/S1001-0742(10)60518-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0742 |
ispartof | Journal of environmental sciences (China), 2011-01, Vol.23 (5), p.875-880 |
issn | 1001-0742 1878-7320 |
language | eng |
recordid | cdi_wanfang_journals_jes_e201105025 |
source | MEDLINE; Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | bond strength Bonding strength bound water calorimetry Calorimetry, Differential Scanning Chemistry Techniques, Analytical - methods Cities Coloring Agents Desiccation Drying dyeing Humidity Industrial Waste - analysis Interstitials Moisture Moisture content moisture distribution Printing pulp and paper sludge Sewage - chemistry sewage sludge Sludge Surface water Temperature thermal analysis Thermogravimetry Water - chemistry Water activity 含水量 城市污水污泥 基础 差示扫描量热 水分分布 活性测试 测试方法 粘结强度 |
title | Moisture distribution in sludges based on different testing methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A20%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moisture%20distribution%20in%20sludges%20based%20on%20different%20testing%20methods&rft.jtitle=Journal%20of%20environmental%20sciences%20(China)&rft.au=Deng,%20Wenyi&rft.date=2011-01-01&rft.volume=23&rft.issue=5&rft.spage=875&rft.epage=880&rft.pages=875-880&rft.issn=1001-0742&rft.eissn=1878-7320&rft_id=info:doi/10.1016/S1001-0742(10)60518-9&rft_dat=%3Cwanfang_jour_proqu%3Ejes_e201105025%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777165077&rft_id=info:pmid/21790063&rft_cqvip_id=37881520&rft_wanfj_id=jes_e201105025&rft_els_id=S1001074210605189&rfr_iscdi=true |