Exploitation of Fenton and Fenton-like reagents as alternative conditioners for alum sludge conditioning

The use of Fenton's reagent (Fe^2+/H2O2) and Fenton-like reagents containing transition metals of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) for an alum sludge conditioning to improve its dewaterability was investigated. The results obtained were compared with those obtained from conditioning the same alum slud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental sciences (China) 2009, Vol.21 (1), p.101-105
Hauptverfasser: Tony, Maha A., Zhao, Y.Q., Tayeb, Aghareed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The use of Fenton's reagent (Fe^2+/H2O2) and Fenton-like reagents containing transition metals of Cu(Ⅱ), Zn(Ⅱ), Co(Ⅱ), and Mn(Ⅱ) for an alum sludge conditioning to improve its dewaterability was investigated. The results obtained were compared with those obtained from conditioning the same alum sludge using cationic and anionic polymers. Experimental results show that Fenton's reagent was the best among the Fenton and Fenton-like reagents for the alum sludge conditioning. A considerable effectiveness of capillary suction time (CST) reduction efficiency of 47% can be achieved under test conditions of Fe^2+/H2O2 = 20/125 mg/g DS (dry solid) and pH 6.0. The observation of floc-like particles after Fenton's reagent conditioning of alum sludge suggested that the mechanism of Fenton's reagent conditioning was different from that of polymer conditioning. In spite of the lower efficiency in the CST reduction of Fenton's reagent in alum sludge conditioning compared to that of polymer conditioning, Fenton's reagent offers a more environmentally safe option. Tiffs study provided an example of proactive treatment engineering, which is aimed at seeking a safe alternative to the use of polymers in sludge conditioning towards achieving a more sustainable sludge management strategy.
ISSN:1001-0742
1878-7320
DOI:10.1016/S1001-0742(09)60018-8