基于粗糙集的自适应入侵检测算法

要想增强入侵检测系统的检出率,将检错的失误降低,就需要依靠基于粗糙集的自适应入侵检测算法,该检测法的提出是建立在目前的入侵检测方法之上的。基于粗糙集的自适应入侵检测算法中既有粗糙集算法,又有入侵检测技术,因此二者的结合可以将安全检测的目的达到。通过对实验数据进行分析,可以得出这样的结论:使用基于粗糙集的自适应入侵检测算法可以将检测率大幅度的提高,无论是基于BP(back propagation)神经网络算法还是支持向量机的入侵检测算法都比不上该算法,因此使用基于粗糙集的自适应入侵检测算法比较科学、有效,可以提供较好的入侵检测服务。...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:菏泽学院学报 2014 (S1), p.196-198
1. Verfasser: 陈小明
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:要想增强入侵检测系统的检出率,将检错的失误降低,就需要依靠基于粗糙集的自适应入侵检测算法,该检测法的提出是建立在目前的入侵检测方法之上的。基于粗糙集的自适应入侵检测算法中既有粗糙集算法,又有入侵检测技术,因此二者的结合可以将安全检测的目的达到。通过对实验数据进行分析,可以得出这样的结论:使用基于粗糙集的自适应入侵检测算法可以将检测率大幅度的提高,无论是基于BP(back propagation)神经网络算法还是支持向量机的入侵检测算法都比不上该算法,因此使用基于粗糙集的自适应入侵检测算法比较科学、有效,可以提供较好的入侵检测服务。
ISSN:1673-2103