Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications

The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oceanologica Sinica 2023-02, Vol.42 (2), p.104-119
Hauptverfasser: Zhao, Weina, Wu, Zhiqiang, Hou, Fanghui, Zhang, Xunhua, Hao, Tianyao, Kim, Hanjoon, Zheng, Yanpeng, Chen, Shanshan, Wang, Huigang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 2
container_start_page 104
container_title Acta oceanologica Sinica
container_volume 42
creator Zhao, Weina
Wu, Zhiqiang
Hou, Fanghui
Zhang, Xunhua
Hao, Tianyao
Kim, Hanjoon
Zheng, Yanpeng
Chen, Shanshan
Wang, Huigang
description The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments. In this study, we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin. The results indicate that strong velocity variations occur at shallow crustal levels. Horizontal velocity bodies show good correlation with surface geological features, and multi-layer features exist in the vertical velocity framework (depth: 0–10 km). The analyses of the velocity model, gravity data, magnetic data, multichannel seismic profiles, and drilling data showed that high-velocity anomalies (>6.5 km/s) of small (thickness: 1–2 km) and large (thickness: >5 km) scales were caused by igneous complexes in the multi-layer structure, which were active during the Palaeogene. Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array. Following the Indosinian movement, a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line. This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.
doi_str_mv 10.1007/s13131-022-2028-y
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202302010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202302010</wanfj_id><sourcerecordid>hyxb_e202302010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-301595ec7a387b7b4f8ba0e4903ceaec241bf9d86ea24763b78391d2baf4f1603</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMo2I4-gLuAC1fR_FSqkqUM_sGAi3FkZhVSqZvqDNWVNknZUw_hO5umhFkpF3ID-c65lxyEXjP6jlHavc9M1CKUc8IpV2R9gnZMtZowqvVTtKNcCiKpvH2OXuR8T6lkUnQ79PsHTNGFsuJc0uLKkgCHGZc94Ou4lD2-g2mKJ3wNFvc216d6woDjjH1IuRCbUvhlJ1ziIY7JHvcrjh6fwgDEzuMEOEPIh-DwYIvFdh5wKBmPEKc4BleF4XCc6qWEOOeX6Jm3U4ZXf_sFuvn08fvlF3L17fPXyw9XxAmuChGUSS3BdVaoru_6xqveUmg0FQ4sON6w3utBtWB507Wi75TQbOC99Y1nLRUX6O3me7Kzr2ua-7ikuU40-_WhN1C_UFBO2Zl8s5HHFH8ukMsjynUltJIt_y_VqbqBkJpVim2USzHnBN4cUzjYtBpGzTlFs6VoaormnKJZq4ZvmlzZeYT06Pxv0R-_IKFG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920198562</pqid></control><display><type>article</type><title>Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zhao, Weina ; Wu, Zhiqiang ; Hou, Fanghui ; Zhang, Xunhua ; Hao, Tianyao ; Kim, Hanjoon ; Zheng, Yanpeng ; Chen, Shanshan ; Wang, Huigang</creator><creatorcontrib>Zhao, Weina ; Wu, Zhiqiang ; Hou, Fanghui ; Zhang, Xunhua ; Hao, Tianyao ; Kim, Hanjoon ; Zheng, Yanpeng ; Chen, Shanshan ; Wang, Huigang</creatorcontrib><description>The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments. In this study, we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin. The results indicate that strong velocity variations occur at shallow crustal levels. Horizontal velocity bodies show good correlation with surface geological features, and multi-layer features exist in the vertical velocity framework (depth: 0–10 km). The analyses of the velocity model, gravity data, magnetic data, multichannel seismic profiles, and drilling data showed that high-velocity anomalies (&gt;6.5 km/s) of small (thickness: 1–2 km) and large (thickness: &gt;5 km) scales were caused by igneous complexes in the multi-layer structure, which were active during the Palaeogene. Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array. Following the Indosinian movement, a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line. This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-022-2028-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anomalies ; Cenozoic ; Climatology ; Compression ; Compressive strength ; Distribution ; Drilling ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Geologic depressions ; Geology ; Gravity data ; Lithology ; Magnetic data ; Marine &amp; Freshwater Sciences ; Marine sediments ; Mesozoic ; Multilayers ; Ocean bottom ; Ocean floor ; Oceanic crust ; Oceanography ; Oceans ; Palaeogene ; Palaeozoic ; Paleogene ; Paleozoic ; Sediment ; Sediments ; Seismic activity ; Seismic analysis ; Seismic data ; Seismic profiles ; Seismic tomography ; Seismographs ; Seismological data ; Tectonics ; Thickness ; Tomography ; Uplift ; Velocity ; Vertical velocities</subject><ispartof>Acta oceanologica Sinica, 2023-02, Vol.42 (2), p.104-119</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-301595ec7a387b7b4f8ba0e4903ceaec241bf9d86ea24763b78391d2baf4f1603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-022-2028-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920198562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhao, Weina</creatorcontrib><creatorcontrib>Wu, Zhiqiang</creatorcontrib><creatorcontrib>Hou, Fanghui</creatorcontrib><creatorcontrib>Zhang, Xunhua</creatorcontrib><creatorcontrib>Hao, Tianyao</creatorcontrib><creatorcontrib>Kim, Hanjoon</creatorcontrib><creatorcontrib>Zheng, Yanpeng</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Wang, Huigang</creatorcontrib><title>Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments. In this study, we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin. The results indicate that strong velocity variations occur at shallow crustal levels. Horizontal velocity bodies show good correlation with surface geological features, and multi-layer features exist in the vertical velocity framework (depth: 0–10 km). The analyses of the velocity model, gravity data, magnetic data, multichannel seismic profiles, and drilling data showed that high-velocity anomalies (&gt;6.5 km/s) of small (thickness: 1–2 km) and large (thickness: &gt;5 km) scales were caused by igneous complexes in the multi-layer structure, which were active during the Palaeogene. Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array. Following the Indosinian movement, a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line. This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.</description><subject>Anomalies</subject><subject>Cenozoic</subject><subject>Climatology</subject><subject>Compression</subject><subject>Compressive strength</subject><subject>Distribution</subject><subject>Drilling</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Geologic depressions</subject><subject>Geology</subject><subject>Gravity data</subject><subject>Lithology</subject><subject>Magnetic data</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Marine sediments</subject><subject>Mesozoic</subject><subject>Multilayers</subject><subject>Ocean bottom</subject><subject>Ocean floor</subject><subject>Oceanic crust</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Palaeogene</subject><subject>Palaeozoic</subject><subject>Paleogene</subject><subject>Paleozoic</subject><subject>Sediment</subject><subject>Sediments</subject><subject>Seismic activity</subject><subject>Seismic analysis</subject><subject>Seismic data</subject><subject>Seismic profiles</subject><subject>Seismic tomography</subject><subject>Seismographs</subject><subject>Seismological data</subject><subject>Tectonics</subject><subject>Thickness</subject><subject>Tomography</subject><subject>Uplift</subject><subject>Velocity</subject><subject>Vertical velocities</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc2KFDEUhYMo2I4-gLuAC1fR_FSqkqUM_sGAi3FkZhVSqZvqDNWVNknZUw_hO5umhFkpF3ID-c65lxyEXjP6jlHavc9M1CKUc8IpV2R9gnZMtZowqvVTtKNcCiKpvH2OXuR8T6lkUnQ79PsHTNGFsuJc0uLKkgCHGZc94Ou4lD2-g2mKJ3wNFvc216d6woDjjH1IuRCbUvhlJ1ziIY7JHvcrjh6fwgDEzuMEOEPIh-DwYIvFdh5wKBmPEKc4BleF4XCc6qWEOOeX6Jm3U4ZXf_sFuvn08fvlF3L17fPXyw9XxAmuChGUSS3BdVaoru_6xqveUmg0FQ4sON6w3utBtWB507Wi75TQbOC99Y1nLRUX6O3me7Kzr2ua-7ikuU40-_WhN1C_UFBO2Zl8s5HHFH8ukMsjynUltJIt_y_VqbqBkJpVim2USzHnBN4cUzjYtBpGzTlFs6VoaormnKJZq4ZvmlzZeYT06Pxv0R-_IKFG</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Zhao, Weina</creator><creator>Wu, Zhiqiang</creator><creator>Hou, Fanghui</creator><creator>Zhang, Xunhua</creator><creator>Hao, Tianyao</creator><creator>Kim, Hanjoon</creator><creator>Zheng, Yanpeng</creator><creator>Chen, Shanshan</creator><creator>Wang, Huigang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China%Qingdao Institute of Marine Geology,China Geological Survey,Qingdao 266071,China%Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China%Marine Active Fault Research Group,Korea Institute of Ocean Science and Technology,Busan 49111,Republic of Korea%Key Laboratory of Marine Geology and Metallogeny,First Institute of Oceanography,Ministry of Natural Resources,Qingdao 266061,China%School of Marine Science and Technology,Northwestern Polytechnical University,Xi'an 710072,China</general><general>Qingdao Research Institute,Northwestern Polytechnical University,Xi'an 710072,China</general><general>Hubei Key Laboratory of Marine Geological Resources,China University of Geosciences,Wuhan 430074,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications</title><author>Zhao, Weina ; Wu, Zhiqiang ; Hou, Fanghui ; Zhang, Xunhua ; Hao, Tianyao ; Kim, Hanjoon ; Zheng, Yanpeng ; Chen, Shanshan ; Wang, Huigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-301595ec7a387b7b4f8ba0e4903ceaec241bf9d86ea24763b78391d2baf4f1603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomalies</topic><topic>Cenozoic</topic><topic>Climatology</topic><topic>Compression</topic><topic>Compressive strength</topic><topic>Distribution</topic><topic>Drilling</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Geologic depressions</topic><topic>Geology</topic><topic>Gravity data</topic><topic>Lithology</topic><topic>Magnetic data</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Marine sediments</topic><topic>Mesozoic</topic><topic>Multilayers</topic><topic>Ocean bottom</topic><topic>Ocean floor</topic><topic>Oceanic crust</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Palaeogene</topic><topic>Palaeozoic</topic><topic>Paleogene</topic><topic>Paleozoic</topic><topic>Sediment</topic><topic>Sediments</topic><topic>Seismic activity</topic><topic>Seismic analysis</topic><topic>Seismic data</topic><topic>Seismic profiles</topic><topic>Seismic tomography</topic><topic>Seismographs</topic><topic>Seismological data</topic><topic>Tectonics</topic><topic>Thickness</topic><topic>Tomography</topic><topic>Uplift</topic><topic>Velocity</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Weina</creatorcontrib><creatorcontrib>Wu, Zhiqiang</creatorcontrib><creatorcontrib>Hou, Fanghui</creatorcontrib><creatorcontrib>Zhang, Xunhua</creatorcontrib><creatorcontrib>Hao, Tianyao</creatorcontrib><creatorcontrib>Kim, Hanjoon</creatorcontrib><creatorcontrib>Zheng, Yanpeng</creatorcontrib><creatorcontrib>Chen, Shanshan</creatorcontrib><creatorcontrib>Wang, Huigang</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Weina</au><au>Wu, Zhiqiang</au><au>Hou, Fanghui</au><au>Zhang, Xunhua</au><au>Hao, Tianyao</au><au>Kim, Hanjoon</au><au>Zheng, Yanpeng</au><au>Chen, Shanshan</au><au>Wang, Huigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><spage>104</spage><epage>119</epage><pages>104-119</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>The South Yellow Sea basin is filled with Mesozoic-Cenozoic continental sediments overlying pre-Palaeozoic and Mesozoic-Palaeozoic marine sediments. Conventional multi-channel seismic data cannot describe the velocity structure of the marine residual basin in detail, leading to the lack of a deeper understanding of the distribution and lithology owing to strong energy shielding on the top interface of marine sediments. In this study, we present seismic tomography data from ocean bottom seismographs that describe the NEE-trending velocity distributions of the basin. The results indicate that strong velocity variations occur at shallow crustal levels. Horizontal velocity bodies show good correlation with surface geological features, and multi-layer features exist in the vertical velocity framework (depth: 0–10 km). The analyses of the velocity model, gravity data, magnetic data, multichannel seismic profiles, and drilling data showed that high-velocity anomalies (&gt;6.5 km/s) of small (thickness: 1–2 km) and large (thickness: &gt;5 km) scales were caused by igneous complexes in the multi-layer structure, which were active during the Palaeogene. Possible locations of good Mesozoic and Palaeozoic marine strata are limited to the Central Uplift and the western part of the Northern Depression along the wide-angle ocean bottom seismograph array. Following the Indosinian movement, a strong compression existed in the Northern Depression during the extensional phase that caused the formation of folds in the middle of the survey line. This study is useful for reconstructing the regional tectonic evolution and delineating the distribution of the marine residual basin in the South Yellow Sea basin.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-022-2028-y</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-505X
ispartof Acta oceanologica Sinica, 2023-02, Vol.42 (2), p.104-119
issn 0253-505X
1869-1099
language eng
recordid cdi_wanfang_journals_hyxb_e202302010
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection; ProQuest Central
subjects Anomalies
Cenozoic
Climatology
Compression
Compressive strength
Distribution
Drilling
Earth and Environmental Science
Earth Sciences
Ecology
Engineering Fluid Dynamics
Environmental Chemistry
Geologic depressions
Geology
Gravity data
Lithology
Magnetic data
Marine & Freshwater Sciences
Marine sediments
Mesozoic
Multilayers
Ocean bottom
Ocean floor
Oceanic crust
Oceanography
Oceans
Palaeogene
Palaeozoic
Paleogene
Paleozoic
Sediment
Sediments
Seismic activity
Seismic analysis
Seismic data
Seismic profiles
Seismic tomography
Seismographs
Seismological data
Tectonics
Thickness
Tomography
Uplift
Velocity
Vertical velocities
title Velocity structure in the South Yellow Sea basin based on first-arrival tomography of wide-angle seismic data and its geological implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Velocity%20structure%20in%20the%20South%20Yellow%20Sea%20basin%20based%20on%20first-arrival%20tomography%20of%20wide-angle%20seismic%20data%20and%20its%20geological%20implications&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Zhao,%20Weina&rft.date=2023-02-01&rft.volume=42&rft.issue=2&rft.spage=104&rft.epage=119&rft.pages=104-119&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-022-2028-y&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202302010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920198562&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202302010&rfr_iscdi=true