Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model
Seasonal location and intensity changes in the western Pacific subtropical high (WPSH) are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia. Therefore, this article delves into the forecast of the western Pacific su...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2022-04, Vol.41 (4), p.101-108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 4 |
container_start_page | 101 |
container_title | Acta oceanologica Sinica |
container_volume | 41 |
creator | Zhou, Jianyin Sun, Mingyang Xiang, Jie Guan, Jiping Du, Huadong Zhou, Lei |
description | Seasonal location and intensity changes in the western Pacific subtropical high (WPSH) are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia. Therefore, this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model. Firstly, the predictors, which are the inputs of the model, are analysed based on three characteristics: the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths; the second is the correspondence of distributions between sea surface temperature, 850 hPa zonal wind (
u
), meridional wind (
v
), and 500 hPa potential height field; and the third is the numerical sensitivity experiment, which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index. Secondly, the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set. The model predicts the WPSH index after 6 h, 24 h, 48 h, and 72 h. The validation set using independent data in 2019 is utilized to illustrate the performance. Finally, the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images. Taking the 2019 typhoon “Lekima” as an example, it shows the promising performance of this model to predict the 500 hPa potential height field. |
doi_str_mv | 10.1007/s13131-021-1965-1 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202204009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202204009</wanfj_id><sourcerecordid>hyxb_e202204009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-da2948f4abdb8d296f839c6c96b41fb230615f55efc99f33c606d57c702ff2023</originalsourceid><addsrcrecordid>eNp9kUtLxTAQhYMoeH38AHcBF66qk6TJbZYivkDQhYK7kOZxm8u9bU1atf_e1gqulFkMDN85w8xB6ITAOQFYXiTCxsqAkoxIwTOygxakEDIjIOUuWgDlLOPAX_fRQUprAE44Wy7Q200TndGpC_UKd5XDHy51Ltb4SZvgg8GpL7vYtMHoDa7CqsKhtu4T2z5-K4a2apoaa9OF99ANuE_TWONqKGOw2DrX4o3TsZ7G28a6zRHa83qT3PFPP0QvN9fPV3fZw-Pt_dXlQ2YYiC6zmsq88LkubVlYKoUvmDTCSFHmxJd0hAj3nDtvpPSMGQHC8qVZAvWeAmWH6Gz2_dC11_VKrZs-1uNGVQ2fpXIjQyEHkCN5OpNtbN768f5flEoKpMhzYP9SIi84p0xMW8lMmdikFJ1XbQxbHQdFQE1JqTkpNSalpqQUGTV01qR2eqqLv85_i74A0mmWRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920184403</pqid></control><display><type>article</type><title>Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhou, Jianyin ; Sun, Mingyang ; Xiang, Jie ; Guan, Jiping ; Du, Huadong ; Zhou, Lei</creator><creatorcontrib>Zhou, Jianyin ; Sun, Mingyang ; Xiang, Jie ; Guan, Jiping ; Du, Huadong ; Zhou, Lei</creatorcontrib><description>Seasonal location and intensity changes in the western Pacific subtropical high (WPSH) are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia. Therefore, this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model. Firstly, the predictors, which are the inputs of the model, are analysed based on three characteristics: the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths; the second is the correspondence of distributions between sea surface temperature, 850 hPa zonal wind (
u
), meridional wind (
v
), and 500 hPa potential height field; and the third is the numerical sensitivity experiment, which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index. Secondly, the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set. The model predicts the WPSH index after 6 h, 24 h, 48 h, and 72 h. The validation set using independent data in 2019 is utilized to illustrate the performance. Finally, the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images. Taking the 2019 typhoon “Lekima” as an example, it shows the promising performance of this model to predict the 500 hPa potential height field.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-021-1965-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Anomalies ; Climatology ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Height ; Hurricanes ; Image enhancement ; Machine learning ; Marine & Freshwater Sciences ; Mathematical models ; Meridional wind ; Modelling ; Modules ; Oceanography ; Sea surface ; Sea surface temperature ; Surface temperature ; Typhoons ; Wind ; Zonal winds</subject><ispartof>Acta oceanologica Sinica, 2022-04, Vol.41 (4), p.101-108</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-da2948f4abdb8d296f839c6c96b41fb230615f55efc99f33c606d57c702ff2023</citedby><cites>FETCH-LOGICAL-c306t-da2948f4abdb8d296f839c6c96b41fb230615f55efc99f33c606d57c702ff2023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-021-1965-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920184403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Zhou, Jianyin</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Guan, Jiping</creatorcontrib><creatorcontrib>Du, Huadong</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><title>Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Seasonal location and intensity changes in the western Pacific subtropical high (WPSH) are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia. Therefore, this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model. Firstly, the predictors, which are the inputs of the model, are analysed based on three characteristics: the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths; the second is the correspondence of distributions between sea surface temperature, 850 hPa zonal wind (
u
), meridional wind (
v
), and 500 hPa potential height field; and the third is the numerical sensitivity experiment, which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index. Secondly, the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set. The model predicts the WPSH index after 6 h, 24 h, 48 h, and 72 h. The validation set using independent data in 2019 is utilized to illustrate the performance. Finally, the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images. Taking the 2019 typhoon “Lekima” as an example, it shows the promising performance of this model to predict the 500 hPa potential height field.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Climatology</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Height</subject><subject>Hurricanes</subject><subject>Image enhancement</subject><subject>Machine learning</subject><subject>Marine & Freshwater Sciences</subject><subject>Mathematical models</subject><subject>Meridional wind</subject><subject>Modelling</subject><subject>Modules</subject><subject>Oceanography</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Surface temperature</subject><subject>Typhoons</subject><subject>Wind</subject><subject>Zonal winds</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxTAQhYMoeH38AHcBF66qk6TJbZYivkDQhYK7kOZxm8u9bU1atf_e1gqulFkMDN85w8xB6ITAOQFYXiTCxsqAkoxIwTOygxakEDIjIOUuWgDlLOPAX_fRQUprAE44Wy7Q200TndGpC_UKd5XDHy51Ltb4SZvgg8GpL7vYtMHoDa7CqsKhtu4T2z5-K4a2apoaa9OF99ANuE_TWONqKGOw2DrX4o3TsZ7G28a6zRHa83qT3PFPP0QvN9fPV3fZw-Pt_dXlQ2YYiC6zmsq88LkubVlYKoUvmDTCSFHmxJd0hAj3nDtvpPSMGQHC8qVZAvWeAmWH6Gz2_dC11_VKrZs-1uNGVQ2fpXIjQyEHkCN5OpNtbN768f5flEoKpMhzYP9SIi84p0xMW8lMmdikFJ1XbQxbHQdFQE1JqTkpNSalpqQUGTV01qR2eqqLv85_i74A0mmWRg</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Zhou, Jianyin</creator><creator>Sun, Mingyang</creator><creator>Xiang, Jie</creator><creator>Guan, Jiping</creator><creator>Du, Huadong</creator><creator>Zhou, Lei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>College of Meteorology and Oceanography,National University of Defense Technology,Nanjing 211101,China%School of Atmospheric Sciences,Sun Yat-sen University,Guangzhou 510275,China%School of Oceanography,Shanghai Jiao Tong University,Shanghai 200030,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220401</creationdate><title>Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model</title><author>Zhou, Jianyin ; Sun, Mingyang ; Xiang, Jie ; Guan, Jiping ; Du, Huadong ; Zhou, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-da2948f4abdb8d296f839c6c96b41fb230615f55efc99f33c606d57c702ff2023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Climatology</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Height</topic><topic>Hurricanes</topic><topic>Image enhancement</topic><topic>Machine learning</topic><topic>Marine & Freshwater Sciences</topic><topic>Mathematical models</topic><topic>Meridional wind</topic><topic>Modelling</topic><topic>Modules</topic><topic>Oceanography</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Surface temperature</topic><topic>Typhoons</topic><topic>Wind</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianyin</creatorcontrib><creatorcontrib>Sun, Mingyang</creatorcontrib><creatorcontrib>Xiang, Jie</creatorcontrib><creatorcontrib>Guan, Jiping</creatorcontrib><creatorcontrib>Du, Huadong</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianyin</au><au>Sun, Mingyang</au><au>Xiang, Jie</au><au>Guan, Jiping</au><au>Du, Huadong</au><au>Zhou, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2022-04-01</date><risdate>2022</risdate><volume>41</volume><issue>4</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Seasonal location and intensity changes in the western Pacific subtropical high (WPSH) are important factors dominating the synoptic weather and the distribution and magnitude of precipitation in the rain belt over East Asia. Therefore, this article delves into the forecast of the western Pacific subtropical high index during typhoon activity by adopting a hybrid deep learning model. Firstly, the predictors, which are the inputs of the model, are analysed based on three characteristics: the first is the statistical discipline of the WPSH index anomalies corresponding to the three types of typhoon paths; the second is the correspondence of distributions between sea surface temperature, 850 hPa zonal wind (
u
), meridional wind (
v
), and 500 hPa potential height field; and the third is the numerical sensitivity experiment, which reflects the evident impact of variations in the physical field around the typhoon to the WPSH index. Secondly, the model is repeatedly trained through the backward propagation algorithm to predict the WPSH index using 2011–2018 atmospheric variables as the input of the training set. The model predicts the WPSH index after 6 h, 24 h, 48 h, and 72 h. The validation set using independent data in 2019 is utilized to illustrate the performance. Finally, the model is improved by changing the CNN2D module to the DeCNN module to enhance its ability to predict images. Taking the 2019 typhoon “Lekima” as an example, it shows the promising performance of this model to predict the 500 hPa potential height field.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-021-1965-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2022-04, Vol.41 (4), p.101-108 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_wanfang_journals_hyxb_e202204009 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Anomalies Climatology Deep learning Earth and Environmental Science Earth Sciences Ecology Engineering Fluid Dynamics Environmental Chemistry Height Hurricanes Image enhancement Machine learning Marine & Freshwater Sciences Mathematical models Meridional wind Modelling Modules Oceanography Sea surface Sea surface temperature Surface temperature Typhoons Wind Zonal winds |
title | Forecasting the western Pacific subtropical high index during typhoon activity using a hybrid deep learning model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T13%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20the%20western%20Pacific%20subtropical%20high%20index%20during%20typhoon%20activity%20using%20a%20hybrid%20deep%20learning%20model&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Zhou,%20Jianyin&rft.date=2022-04-01&rft.volume=41&rft.issue=4&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-021-1965-1&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202204009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920184403&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202204009&rfr_iscdi=true |