Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea
Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day vari...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2020-07, Vol.39 (7), p.91-106 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 7 |
container_start_page | 91 |
container_title | Acta oceanologica Sinica |
container_volume | 39 |
creator | Zheng, Hua Zhu, Xiao-Hua Nakamura, Hirohiko Park, Jae-Hun Jeon, Chanhyung Zhao, Ruixiang Nishina, Ayako Zhang, Chuanzheng Na, Hanna Zhu, Ze-Nan Min, Hong-Sik |
description | Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability (
P
bot21
). The
P
bot21
, which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of
P
bot21
. The modeled results show that the
P
bot21
driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the
P
bot21
was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of
P
bot21
by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The
P
bot21
driven southeast of the Changjiang Estuary by the WSC was detected while the Pb
ot21
generated northeast of the Changjiang Estuary was not. |
doi_str_mv | 10.1007/s13131-020-1603-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202007010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202007010</wanfj_id><sourcerecordid>hyxb_e202007010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhEVwIBsnD5CbIAefFHdL86djWGwnYPDBNuQmemakXZm1Zi1p7czbR8sYfIrRQYj-qopWMfYN4QcCtOcJVTkCJAhsQAn1ga2wa7RA0PqErUDWStRQ__nEPqf0AFBjrdoVe7qywUbKfgqcwsj3cdrTZnlPjksUI828n3KeHsvQpnSIlj9T9NT7nc8zH6N_toH3M3_xxSDlI8SHQ9xxH3jeWn5BKfP11gfit5a-sI-Odsl-fb1P2f3lxd36l7i-ufq9_nkthqqSWTg9AvbaOtU4kh0QumqskZqhU-3Q60r1Hci2Gxs1OO0QgWxVYSvbVrtONuqUnS2-LxQchY15mA4xlESznf_2xsryV9ACQiG_L2RZ_ulgU35DpUbdoIKufpeqVNNpJbUsFC7UEKeUonVmH_0jxdkgmGNTZmnKlHRzbMqoopGLJhU2bGx8c_6_6B9ygJR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919613085</pqid></control><display><type>article</type><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</creator><creatorcontrib>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</creatorcontrib><description>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability (
P
bot21
). The
P
bot21
, which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of
P
bot21
. The modeled results show that the
P
bot21
driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the
P
bot21
was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of
P
bot21
by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The
P
bot21
driven southeast of the Changjiang Estuary by the WSC was detected while the Pb
ot21
generated northeast of the Changjiang Estuary was not.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-020-1603-3</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Oceanography</publisher><subject>Barotropic mode ; Bottom friction ; Bottom pressure ; Climatology ; Continental shelves ; Dissipation ; Earth and Environmental Science ; Earth Sciences ; Echo sounding ; Echoes ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Estuaries ; Estuarine dynamics ; Fisheries ; Marine & Freshwater Sciences ; Ocean bottom ; Ocean circulation ; Ocean floor ; Ocean models ; Oceanography ; Oceans ; Pressure ; Propagation ; Recording ; Salinity ; Satellites ; Science ; Stress propagation ; Time lag ; Variability ; Wind ; Wind stress ; Wind stress curl</subject><ispartof>Acta oceanologica Sinica, 2020-07, Vol.39 (7), p.91-106</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</citedby><cites>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-020-1603-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919613085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Xiao-Hua</creatorcontrib><creatorcontrib>Nakamura, Hirohiko</creatorcontrib><creatorcontrib>Park, Jae-Hun</creatorcontrib><creatorcontrib>Jeon, Chanhyung</creatorcontrib><creatorcontrib>Zhao, Ruixiang</creatorcontrib><creatorcontrib>Nishina, Ayako</creatorcontrib><creatorcontrib>Zhang, Chuanzheng</creatorcontrib><creatorcontrib>Na, Hanna</creatorcontrib><creatorcontrib>Zhu, Ze-Nan</creatorcontrib><creatorcontrib>Min, Hong-Sik</creatorcontrib><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability (
P
bot21
). The
P
bot21
, which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of
P
bot21
. The modeled results show that the
P
bot21
driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the
P
bot21
was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of
P
bot21
by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The
P
bot21
driven southeast of the Changjiang Estuary by the WSC was detected while the Pb
ot21
generated northeast of the Changjiang Estuary was not.</description><subject>Barotropic mode</subject><subject>Bottom friction</subject><subject>Bottom pressure</subject><subject>Climatology</subject><subject>Continental shelves</subject><subject>Dissipation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Echo sounding</subject><subject>Echoes</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Fisheries</subject><subject>Marine & Freshwater Sciences</subject><subject>Ocean bottom</subject><subject>Ocean circulation</subject><subject>Ocean floor</subject><subject>Ocean models</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Pressure</subject><subject>Propagation</subject><subject>Recording</subject><subject>Salinity</subject><subject>Satellites</subject><subject>Science</subject><subject>Stress propagation</subject><subject>Time lag</subject><subject>Variability</subject><subject>Wind</subject><subject>Wind stress</subject><subject>Wind stress curl</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1qHDEQhEVwIBsnD5CbIAefFHdL86djWGwnYPDBNuQmemakXZm1Zi1p7czbR8sYfIrRQYj-qopWMfYN4QcCtOcJVTkCJAhsQAn1ga2wa7RA0PqErUDWStRQ__nEPqf0AFBjrdoVe7qywUbKfgqcwsj3cdrTZnlPjksUI828n3KeHsvQpnSIlj9T9NT7nc8zH6N_toH3M3_xxSDlI8SHQ9xxH3jeWn5BKfP11gfit5a-sI-Odsl-fb1P2f3lxd36l7i-ufq9_nkthqqSWTg9AvbaOtU4kh0QumqskZqhU-3Q60r1Hci2Gxs1OO0QgWxVYSvbVrtONuqUnS2-LxQchY15mA4xlESznf_2xsryV9ACQiG_L2RZ_ulgU35DpUbdoIKufpeqVNNpJbUsFC7UEKeUonVmH_0jxdkgmGNTZmnKlHRzbMqoopGLJhU2bGx8c_6_6B9ygJR0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zheng, Hua</creator><creator>Zhu, Xiao-Hua</creator><creator>Nakamura, Hirohiko</creator><creator>Park, Jae-Hun</creator><creator>Jeon, Chanhyung</creator><creator>Zhao, Ruixiang</creator><creator>Nishina, Ayako</creator><creator>Zhang, Chuanzheng</creator><creator>Na, Hanna</creator><creator>Zhu, Ze-Nan</creator><creator>Min, Hong-Sik</creator><general>The Chinese Society of Oceanography</general><general>Springer Nature B.V</general><general>State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China</general><general>Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China%Faculty of Fisheries, Kagoshima University, Kagoshima 8900056, Japan%Department of Ocean Sciences, Inha University, Incheon 22212, Korea%Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA%School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea%Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Korea</general><general>School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200701</creationdate><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><author>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barotropic mode</topic><topic>Bottom friction</topic><topic>Bottom pressure</topic><topic>Climatology</topic><topic>Continental shelves</topic><topic>Dissipation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Echo sounding</topic><topic>Echoes</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Fisheries</topic><topic>Marine & Freshwater Sciences</topic><topic>Ocean bottom</topic><topic>Ocean circulation</topic><topic>Ocean floor</topic><topic>Ocean models</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Pressure</topic><topic>Propagation</topic><topic>Recording</topic><topic>Salinity</topic><topic>Satellites</topic><topic>Science</topic><topic>Stress propagation</topic><topic>Time lag</topic><topic>Variability</topic><topic>Wind</topic><topic>Wind stress</topic><topic>Wind stress curl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Xiao-Hua</creatorcontrib><creatorcontrib>Nakamura, Hirohiko</creatorcontrib><creatorcontrib>Park, Jae-Hun</creatorcontrib><creatorcontrib>Jeon, Chanhyung</creatorcontrib><creatorcontrib>Zhao, Ruixiang</creatorcontrib><creatorcontrib>Nishina, Ayako</creatorcontrib><creatorcontrib>Zhang, Chuanzheng</creatorcontrib><creatorcontrib>Na, Hanna</creatorcontrib><creatorcontrib>Zhu, Ze-Nan</creatorcontrib><creatorcontrib>Min, Hong-Sik</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hua</au><au>Zhu, Xiao-Hua</au><au>Nakamura, Hirohiko</au><au>Park, Jae-Hun</au><au>Jeon, Chanhyung</au><au>Zhao, Ruixiang</au><au>Nishina, Ayako</au><au>Zhang, Chuanzheng</au><au>Na, Hanna</au><au>Zhu, Ze-Nan</au><au>Min, Hong-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>39</volume><issue>7</issue><spage>91</spage><epage>106</epage><pages>91-106</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability (
P
bot21
). The
P
bot21
, which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of
P
bot21
. The modeled results show that the
P
bot21
driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the
P
bot21
was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of
P
bot21
by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The
P
bot21
driven southeast of the Changjiang Estuary by the WSC was detected while the Pb
ot21
generated northeast of the Changjiang Estuary was not.</abstract><cop>Beijing</cop><pub>The Chinese Society of Oceanography</pub><doi>10.1007/s13131-020-1603-3</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2020-07, Vol.39 (7), p.91-106 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_wanfang_journals_hyxb_e202007010 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Barotropic mode Bottom friction Bottom pressure Climatology Continental shelves Dissipation Earth and Environmental Science Earth Sciences Echo sounding Echoes Ecology Engineering Fluid Dynamics Environmental Chemistry Estuaries Estuarine dynamics Fisheries Marine & Freshwater Sciences Ocean bottom Ocean circulation Ocean floor Ocean models Oceanography Oceans Pressure Propagation Recording Salinity Satellites Science Stress propagation Time lag Variability Wind Wind stress Wind stress curl |
title | Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20propagation%20of%2021-day%20bottom%20pressure%20variability%20driven%20by%20wind%20stress%20curl%20in%20the%20East%20China%20Sea&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Zheng,%20Hua&rft.date=2020-07-01&rft.volume=39&rft.issue=7&rft.spage=91&rft.epage=106&rft.pages=91-106&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-020-1603-3&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202007010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919613085&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202007010&rfr_iscdi=true |