Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea

Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta oceanologica Sinica 2020-07, Vol.39 (7), p.91-106
Hauptverfasser: Zheng, Hua, Zhu, Xiao-Hua, Nakamura, Hirohiko, Park, Jae-Hun, Jeon, Chanhyung, Zhao, Ruixiang, Nishina, Ayako, Zhang, Chuanzheng, Na, Hanna, Zhu, Ze-Nan, Min, Hong-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106
container_issue 7
container_start_page 91
container_title Acta oceanologica Sinica
container_volume 39
creator Zheng, Hua
Zhu, Xiao-Hua
Nakamura, Hirohiko
Park, Jae-Hun
Jeon, Chanhyung
Zhao, Ruixiang
Nishina, Ayako
Zhang, Chuanzheng
Na, Hanna
Zhu, Ze-Nan
Min, Hong-Sik
description Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability ( P bot21 ). The P bot21 , which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of P bot21 . The modeled results show that the P bot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the P bot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of P bot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The P bot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pb ot21 generated northeast of the Changjiang Estuary was not.
doi_str_mv 10.1007/s13131-020-1603-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202007010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202007010</wanfj_id><sourcerecordid>hyxb_e202007010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</originalsourceid><addsrcrecordid>eNp9kc1qHDEQhEVwIBsnD5CbIAefFHdL86djWGwnYPDBNuQmemakXZm1Zi1p7czbR8sYfIrRQYj-qopWMfYN4QcCtOcJVTkCJAhsQAn1ga2wa7RA0PqErUDWStRQ__nEPqf0AFBjrdoVe7qywUbKfgqcwsj3cdrTZnlPjksUI828n3KeHsvQpnSIlj9T9NT7nc8zH6N_toH3M3_xxSDlI8SHQ9xxH3jeWn5BKfP11gfit5a-sI-Odsl-fb1P2f3lxd36l7i-ufq9_nkthqqSWTg9AvbaOtU4kh0QumqskZqhU-3Q60r1Hci2Gxs1OO0QgWxVYSvbVrtONuqUnS2-LxQchY15mA4xlESznf_2xsryV9ACQiG_L2RZ_ulgU35DpUbdoIKufpeqVNNpJbUsFC7UEKeUonVmH_0jxdkgmGNTZmnKlHRzbMqoopGLJhU2bGx8c_6_6B9ygJR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919613085</pqid></control><display><type>article</type><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</creator><creatorcontrib>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</creatorcontrib><description>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability ( P bot21 ). The P bot21 , which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of P bot21 . The modeled results show that the P bot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the P bot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of P bot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The P bot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pb ot21 generated northeast of the Changjiang Estuary was not.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-020-1603-3</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Oceanography</publisher><subject>Barotropic mode ; Bottom friction ; Bottom pressure ; Climatology ; Continental shelves ; Dissipation ; Earth and Environmental Science ; Earth Sciences ; Echo sounding ; Echoes ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Estuaries ; Estuarine dynamics ; Fisheries ; Marine &amp; Freshwater Sciences ; Ocean bottom ; Ocean circulation ; Ocean floor ; Ocean models ; Oceanography ; Oceans ; Pressure ; Propagation ; Recording ; Salinity ; Satellites ; Science ; Stress propagation ; Time lag ; Variability ; Wind ; Wind stress ; Wind stress curl</subject><ispartof>Acta oceanologica Sinica, 2020-07, Vol.39 (7), p.91-106</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</citedby><cites>FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-020-1603-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919613085?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Xiao-Hua</creatorcontrib><creatorcontrib>Nakamura, Hirohiko</creatorcontrib><creatorcontrib>Park, Jae-Hun</creatorcontrib><creatorcontrib>Jeon, Chanhyung</creatorcontrib><creatorcontrib>Zhao, Ruixiang</creatorcontrib><creatorcontrib>Nishina, Ayako</creatorcontrib><creatorcontrib>Zhang, Chuanzheng</creatorcontrib><creatorcontrib>Na, Hanna</creatorcontrib><creatorcontrib>Zhu, Ze-Nan</creatorcontrib><creatorcontrib>Min, Hong-Sik</creatorcontrib><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability ( P bot21 ). The P bot21 , which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of P bot21 . The modeled results show that the P bot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the P bot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of P bot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The P bot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pb ot21 generated northeast of the Changjiang Estuary was not.</description><subject>Barotropic mode</subject><subject>Bottom friction</subject><subject>Bottom pressure</subject><subject>Climatology</subject><subject>Continental shelves</subject><subject>Dissipation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Echo sounding</subject><subject>Echoes</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Fisheries</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Ocean bottom</subject><subject>Ocean circulation</subject><subject>Ocean floor</subject><subject>Ocean models</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Pressure</subject><subject>Propagation</subject><subject>Recording</subject><subject>Salinity</subject><subject>Satellites</subject><subject>Science</subject><subject>Stress propagation</subject><subject>Time lag</subject><subject>Variability</subject><subject>Wind</subject><subject>Wind stress</subject><subject>Wind stress curl</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1qHDEQhEVwIBsnD5CbIAefFHdL86djWGwnYPDBNuQmemakXZm1Zi1p7czbR8sYfIrRQYj-qopWMfYN4QcCtOcJVTkCJAhsQAn1ga2wa7RA0PqErUDWStRQ__nEPqf0AFBjrdoVe7qywUbKfgqcwsj3cdrTZnlPjksUI828n3KeHsvQpnSIlj9T9NT7nc8zH6N_toH3M3_xxSDlI8SHQ9xxH3jeWn5BKfP11gfit5a-sI-Odsl-fb1P2f3lxd36l7i-ufq9_nkthqqSWTg9AvbaOtU4kh0QumqskZqhU-3Q60r1Hci2Gxs1OO0QgWxVYSvbVrtONuqUnS2-LxQchY15mA4xlESznf_2xsryV9ACQiG_L2RZ_ulgU35DpUbdoIKufpeqVNNpJbUsFC7UEKeUonVmH_0jxdkgmGNTZmnKlHRzbMqoopGLJhU2bGx8c_6_6B9ygJR0</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Zheng, Hua</creator><creator>Zhu, Xiao-Hua</creator><creator>Nakamura, Hirohiko</creator><creator>Park, Jae-Hun</creator><creator>Jeon, Chanhyung</creator><creator>Zhao, Ruixiang</creator><creator>Nishina, Ayako</creator><creator>Zhang, Chuanzheng</creator><creator>Na, Hanna</creator><creator>Zhu, Ze-Nan</creator><creator>Min, Hong-Sik</creator><general>The Chinese Society of Oceanography</general><general>Springer Nature B.V</general><general>State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China%State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China</general><general>Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China%Faculty of Fisheries, Kagoshima University, Kagoshima 8900056, Japan%Department of Ocean Sciences, Inha University, Incheon 22212, Korea%Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA%School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea%Ocean Circulation and Climate Research Center, Korea Institute of Ocean Science and Technology, Busan 49111, Korea</general><general>School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200701</creationdate><title>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</title><author>Zheng, Hua ; Zhu, Xiao-Hua ; Nakamura, Hirohiko ; Park, Jae-Hun ; Jeon, Chanhyung ; Zhao, Ruixiang ; Nishina, Ayako ; Zhang, Chuanzheng ; Na, Hanna ; Zhu, Ze-Nan ; Min, Hong-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-f9d01b9ef36fa280a1f4d51a6c837cb943b80278d63cf9f110ae44172779f8263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Barotropic mode</topic><topic>Bottom friction</topic><topic>Bottom pressure</topic><topic>Climatology</topic><topic>Continental shelves</topic><topic>Dissipation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Echo sounding</topic><topic>Echoes</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Fisheries</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Ocean bottom</topic><topic>Ocean circulation</topic><topic>Ocean floor</topic><topic>Ocean models</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Pressure</topic><topic>Propagation</topic><topic>Recording</topic><topic>Salinity</topic><topic>Satellites</topic><topic>Science</topic><topic>Stress propagation</topic><topic>Time lag</topic><topic>Variability</topic><topic>Wind</topic><topic>Wind stress</topic><topic>Wind stress curl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Hua</creatorcontrib><creatorcontrib>Zhu, Xiao-Hua</creatorcontrib><creatorcontrib>Nakamura, Hirohiko</creatorcontrib><creatorcontrib>Park, Jae-Hun</creatorcontrib><creatorcontrib>Jeon, Chanhyung</creatorcontrib><creatorcontrib>Zhao, Ruixiang</creatorcontrib><creatorcontrib>Nishina, Ayako</creatorcontrib><creatorcontrib>Zhang, Chuanzheng</creatorcontrib><creatorcontrib>Na, Hanna</creatorcontrib><creatorcontrib>Zhu, Ze-Nan</creatorcontrib><creatorcontrib>Min, Hong-Sik</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Hua</au><au>Zhu, Xiao-Hua</au><au>Nakamura, Hirohiko</au><au>Park, Jae-Hun</au><au>Jeon, Chanhyung</au><au>Zhao, Ruixiang</au><au>Nishina, Ayako</au><au>Zhang, Chuanzheng</au><au>Na, Hanna</au><au>Zhu, Ze-Nan</au><au>Min, Hong-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>39</volume><issue>7</issue><spage>91</spage><epage>106</epage><pages>91-106</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Between June 2015 and June 2017, two pressure-recording inverted echo sounders (PIESs) and five current and pressure-recording inverted echo sounders (CPIESs) deployed along a section across the Kerama Gap acquired a dataset of ocean bottom pressure records in which there was significant 21-day variability ( P bot21 ). The P bot21 , which was particularly strong from July-December 2016, was coherent with wind stress curl (WSC) on the continental shelf of the East China Sea (ECS) with a squared coherence of 0.65 for a 3-day time lag. A barotropic ocean model demonstrated the generation, propagation, and dissipation of P bot21 . The modeled results show that the P bot21 driven by coastal ocean WSC in the ECS propagated toward the Ryukyu Island Chain (RIC), while deep ocean WSC could not induce such variability. On the continental shelf, the P bot21 was generated nearly synchronously with the WSC from the coastline to the southeast but dissipated within a few days due to the effect of bottom friction. The detection of P bot21 by the moored array was dependent on the 21-day WSC patterns on the continental shelf. The P bot21 driven southeast of the Changjiang Estuary by the WSC was detected while the Pb ot21 generated northeast of the Changjiang Estuary was not.</abstract><cop>Beijing</cop><pub>The Chinese Society of Oceanography</pub><doi>10.1007/s13131-020-1603-3</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-505X
ispartof Acta oceanologica Sinica, 2020-07, Vol.39 (7), p.91-106
issn 0253-505X
1869-1099
language eng
recordid cdi_wanfang_journals_hyxb_e202007010
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Barotropic mode
Bottom friction
Bottom pressure
Climatology
Continental shelves
Dissipation
Earth and Environmental Science
Earth Sciences
Echo sounding
Echoes
Ecology
Engineering Fluid Dynamics
Environmental Chemistry
Estuaries
Estuarine dynamics
Fisheries
Marine & Freshwater Sciences
Ocean bottom
Ocean circulation
Ocean floor
Ocean models
Oceanography
Oceans
Pressure
Propagation
Recording
Salinity
Satellites
Science
Stress propagation
Time lag
Variability
Wind
Wind stress
Wind stress curl
title Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20and%20propagation%20of%2021-day%20bottom%20pressure%20variability%20driven%20by%20wind%20stress%20curl%20in%20the%20East%20China%20Sea&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Zheng,%20Hua&rft.date=2020-07-01&rft.volume=39&rft.issue=7&rft.spage=91&rft.epage=106&rft.pages=91-106&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-020-1603-3&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202007010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919613085&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202007010&rfr_iscdi=true