A new statistical model of wave heights based on the concept of wave breaking critical zone
When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wav...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2015-05, Vol.34 (5), p.81-85 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 85 |
---|---|
container_issue | 5 |
container_start_page | 81 |
container_title | Acta oceanologica Sinica |
container_volume | 34 |
creator | Yang, Jiaxuan Li, Xunqiang Zhu, Shouxian Zhang, Wenjing Wang, Lei |
description | When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%. |
doi_str_mv | 10.1007/s13131-015-0670-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e201505011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665044424</cqvip_id><wanfj_id>hyxb_e201505011</wanfj_id><sourcerecordid>hyxb_e201505011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-cc71ab1b20192f34b3632ecf9fec6810d175dd8ea50c4f1d4217dc083e20f6d33</originalsourceid><addsrcrecordid>eNp9kU1P3DAURS3USp1SfkB3VrvoKvCev5IsEWoBCYkNSJVYWI5jJ4HBHuzQAX59PQqiXSEvvDn3HtmXkK8IhwhQH2Xk5VSAsgJVQ8X3yAob1VYIbfuBrIBJXkmQvz-RzznfAkiUvF6Rm2Ma3Jbm2cxTnidr1vQ-9m5No6db88fR0U3DOGfamex6GgOdR0dtDNZt5jeoS87cTWGgNk1LyUsM7gv56M06u4PXe59c__p5dXJWXVyenp8cX1RWAJ8ra2s0HXYMsGWei44rzpz1rXdWNQg91rLvG2ckWOGxFwzr3kLDHQOves73yY-ld2uCN2HQt_ExhWLU4_NTpwuG5eWAWMjvC7lJ8eHR5fkfylpsy4-oVr1HoWqEElKwnRUXyqaYc3Jeb9J0b9KzRtC7TfSyiS52vdtE7zJsyeTChsGl_5rfCX17FY0xDA8l92ZSSoIQggn-F44emGo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684645423</pqid></control><display><type>article</type><title>A new statistical model of wave heights based on the concept of wave breaking critical zone</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Jiaxuan ; Li, Xunqiang ; Zhu, Shouxian ; Zhang, Wenjing ; Wang, Lei</creator><creatorcontrib>Yang, Jiaxuan ; Li, Xunqiang ; Zhu, Shouxian ; Zhang, Wenjing ; Wang, Lei</creatorcontrib><description>When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-015-0670-3</identifier><language>eng</language><publisher>Beijing: The Chinese Society of Oceanography</publisher><subject>Climatology ; Conservation equations ; Deep water ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Energy conservation ; Engineering Fluid Dynamics ; Environmental Chemistry ; Flumes ; Linear waves ; Marine & Freshwater Sciences ; Mathematical models ; Oceanography ; Shallow water ; Slopes ; Statistical models ; Surf ; Wave breaking ; Wave dispersion ; Wave energy ; Wave height ; Wave power ; 临界区域 ; 基础 ; 断裂区 ; 波浪高度 ; 波高 ; 统计模型 ; 能量守恒方程 ; 计算模型</subject><ispartof>Acta oceanologica Sinica, 2015-05, Vol.34 (5), p.81-85</ispartof><rights>The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2015</rights><rights>The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2015.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-cc71ab1b20192f34b3632ecf9fec6810d175dd8ea50c4f1d4217dc083e20f6d33</citedby><cites>FETCH-LOGICAL-c403t-cc71ab1b20192f34b3632ecf9fec6810d175dd8ea50c4f1d4217dc083e20f6d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86790X/86790X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-015-0670-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919537696?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Yang, Jiaxuan</creatorcontrib><creatorcontrib>Li, Xunqiang</creatorcontrib><creatorcontrib>Zhu, Shouxian</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><title>A new statistical model of wave heights based on the concept of wave breaking critical zone</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><addtitle>Acta Oceanologica Sinica</addtitle><description>When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.</description><subject>Climatology</subject><subject>Conservation equations</subject><subject>Deep water</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Energy conservation</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Flumes</subject><subject>Linear waves</subject><subject>Marine & Freshwater Sciences</subject><subject>Mathematical models</subject><subject>Oceanography</subject><subject>Shallow water</subject><subject>Slopes</subject><subject>Statistical models</subject><subject>Surf</subject><subject>Wave breaking</subject><subject>Wave dispersion</subject><subject>Wave energy</subject><subject>Wave height</subject><subject>Wave power</subject><subject>临界区域</subject><subject>基础</subject><subject>断裂区</subject><subject>波浪高度</subject><subject>波高</subject><subject>统计模型</subject><subject>能量守恒方程</subject><subject>计算模型</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAURS3USp1SfkB3VrvoKvCev5IsEWoBCYkNSJVYWI5jJ4HBHuzQAX59PQqiXSEvvDn3HtmXkK8IhwhQH2Xk5VSAsgJVQ8X3yAob1VYIbfuBrIBJXkmQvz-RzznfAkiUvF6Rm2Ma3Jbm2cxTnidr1vQ-9m5No6db88fR0U3DOGfamex6GgOdR0dtDNZt5jeoS87cTWGgNk1LyUsM7gv56M06u4PXe59c__p5dXJWXVyenp8cX1RWAJ8ra2s0HXYMsGWei44rzpz1rXdWNQg91rLvG2ckWOGxFwzr3kLDHQOves73yY-ld2uCN2HQt_ExhWLU4_NTpwuG5eWAWMjvC7lJ8eHR5fkfylpsy4-oVr1HoWqEElKwnRUXyqaYc3Jeb9J0b9KzRtC7TfSyiS52vdtE7zJsyeTChsGl_5rfCX17FY0xDA8l92ZSSoIQggn-F44emGo</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Yang, Jiaxuan</creator><creator>Li, Xunqiang</creator><creator>Zhu, Shouxian</creator><creator>Zhang, Wenjing</creator><creator>Wang, Lei</creator><general>The Chinese Society of Oceanography</general><general>Springer Nature B.V</general><general>Institute of Meteorology and Marine, PLA University of Science and Technology, Nanjing 210001, China</general><general>National Key Laboratory on Ship Vibration and Noise, Wuhan 430033, China%Institute of Meteorology and Marine, PLA University of Science and Technology, Nanjing 210001, China%College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China</general><general>Institute of Noise and Vibration, Naval University of Engineering, Wuhan 430033, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>BBNVY</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150501</creationdate><title>A new statistical model of wave heights based on the concept of wave breaking critical zone</title><author>Yang, Jiaxuan ; Li, Xunqiang ; Zhu, Shouxian ; Zhang, Wenjing ; Wang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-cc71ab1b20192f34b3632ecf9fec6810d175dd8ea50c4f1d4217dc083e20f6d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Climatology</topic><topic>Conservation equations</topic><topic>Deep water</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Energy conservation</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Flumes</topic><topic>Linear waves</topic><topic>Marine & Freshwater Sciences</topic><topic>Mathematical models</topic><topic>Oceanography</topic><topic>Shallow water</topic><topic>Slopes</topic><topic>Statistical models</topic><topic>Surf</topic><topic>Wave breaking</topic><topic>Wave dispersion</topic><topic>Wave energy</topic><topic>Wave height</topic><topic>Wave power</topic><topic>临界区域</topic><topic>基础</topic><topic>断裂区</topic><topic>波浪高度</topic><topic>波高</topic><topic>统计模型</topic><topic>能量守恒方程</topic><topic>计算模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jiaxuan</creatorcontrib><creatorcontrib>Li, Xunqiang</creatorcontrib><creatorcontrib>Zhu, Shouxian</creatorcontrib><creatorcontrib>Zhang, Wenjing</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Biological Science Collection</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jiaxuan</au><au>Li, Xunqiang</au><au>Zhu, Shouxian</au><au>Zhang, Wenjing</au><au>Wang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new statistical model of wave heights based on the concept of wave breaking critical zone</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><addtitle>Acta Oceanologica Sinica</addtitle><date>2015-05-01</date><risdate>2015</risdate><volume>34</volume><issue>5</issue><spage>81</spage><epage>85</epage><pages>81-85</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>When waves propagate from deep water to shallow water, wave heights and steepness increase and then waves roll back and break. This phenomenon is called surf. Currently, the present statistical calculation model of surf was derived mainly from the wave energy conservation equation and the linear wave dispersion relation, but it cannot reflect accurately the process which is a rapid increasing in wave height near the broken point. So, the concept of a surf breaking critical zone is presented. And the nearshore is divided as deep water zone, shallow water zone, surf breaking critical zone and after breaking zone. Besides, the calculation formula for the height of the surf breaking critical zone has founded based on flume experiments, thereby a new statistical calculation model on the surf has been established. Using the new model, the calculation error of wave height maximum is reduced from 17.62% to 6.43%.</abstract><cop>Beijing</cop><pub>The Chinese Society of Oceanography</pub><doi>10.1007/s13131-015-0670-3</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2015-05, Vol.34 (5), p.81-85 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_wanfang_journals_hyxb_e201505011 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Climatology Conservation equations Deep water Earth and Environmental Science Earth Sciences Ecology Energy conservation Engineering Fluid Dynamics Environmental Chemistry Flumes Linear waves Marine & Freshwater Sciences Mathematical models Oceanography Shallow water Slopes Statistical models Surf Wave breaking Wave dispersion Wave energy Wave height Wave power 临界区域 基础 断裂区 波浪高度 波高 统计模型 能量守恒方程 计算模型 |
title | A new statistical model of wave heights based on the concept of wave breaking critical zone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A54%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20statistical%20model%20of%20wave%20heights%20based%20on%20the%20concept%20of%20wave%20breaking%20critical%20zone&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Yang,%20Jiaxuan&rft.date=2015-05-01&rft.volume=34&rft.issue=5&rft.spage=81&rft.epage=85&rft.pages=81-85&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-015-0670-3&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e201505011%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684645423&rft_id=info:pmid/&rft_cqvip_id=665044424&rft_wanfj_id=hyxb_e201505011&rfr_iscdi=true |