Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network

Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2024-01, Vol.37 (1), p.106-117
Hauptverfasser: MENG, Wanzhi, PAN, Zhuorui, WEN, Sixin, QIN, Pan, SUN, Ximing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 106
container_title Chinese journal of aeronautics
container_volume 37
creator MENG, Wanzhi
PAN, Zhuorui
WEN, Sixin
QIN, Pan
SUN, Ximing
description Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.
doi_str_mv 10.1016/j.cja.2023.09.001
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202401008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202401008</wanfj_id><els_id>S1000936123003059</els_id><sourcerecordid>hkxb_e202401008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-e8bd8a515ec8eaa4964744368cc30f6dcc2920a1e3eed7a28b5be600296144d3</originalsourceid><addsrcrecordid>eNp9kD1vwyAQhhlaqenHD-jmrZPdwxDHVqco6pcUqUt2hOGc4MQQAXHaf18id-50X-97unsIeaRQUKDVc1-oXhYllKyApgCgV2RGASBvWEVvyG0IPQBrFhRmZLtE79BujcUs7vwpxAxDNIOMxtlMWp3h0KLWqLMRvemMmiatDKmVEjMcvRtTHnE4Oi8PmXJ2dIfTRZYqi_Hs_P6eXHfyEPDhL96RzdvrZvWRr7_eP1fLda5YyWOOdatrOadzVDVKyZuKLzhnVa0Ug67SSpVNCZIiQ9QLWdbtvMUKoGwqyrlmd-RpWnuWtpN2K3p38umMIHb771ZggsIhsaiTkk5K5V0IHjtx9Olt_yMoiAtG0YuEUVwwCmhEwpg8L5MH0wejQS-CMmgVauNRRaGd-cf9Cy7qfzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>MENG, Wanzhi ; PAN, Zhuorui ; WEN, Sixin ; QIN, Pan ; SUN, Ximing</creator><creatorcontrib>MENG, Wanzhi ; PAN, Zhuorui ; WEN, Sixin ; QIN, Pan ; SUN, Ximing</creatorcontrib><description>Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2023.09.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Embedded deployment ; Hardware-in-the-loop testing ; Ignition verification ; Temporal convolutional network ; Thrust estimation</subject><ispartof>Chinese journal of aeronautics, 2024-01, Vol.37 (1), p.106-117</ispartof><rights>2023</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c324t-e8bd8a515ec8eaa4964744368cc30f6dcc2920a1e3eed7a28b5be600296144d3</cites><orcidid>0000-0002-2975-2252 ; 0000-0003-3160-2744 ; 0000-0002-9929-1033 ; 0000-0003-0545-3044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>MENG, Wanzhi</creatorcontrib><creatorcontrib>PAN, Zhuorui</creatorcontrib><creatorcontrib>WEN, Sixin</creatorcontrib><creatorcontrib>QIN, Pan</creatorcontrib><creatorcontrib>SUN, Ximing</creatorcontrib><title>Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network</title><title>Chinese journal of aeronautics</title><description>Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.</description><subject>Embedded deployment</subject><subject>Hardware-in-the-loop testing</subject><subject>Ignition verification</subject><subject>Temporal convolutional network</subject><subject>Thrust estimation</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kD1vwyAQhhlaqenHD-jmrZPdwxDHVqco6pcUqUt2hOGc4MQQAXHaf18id-50X-97unsIeaRQUKDVc1-oXhYllKyApgCgV2RGASBvWEVvyG0IPQBrFhRmZLtE79BujcUs7vwpxAxDNIOMxtlMWp3h0KLWqLMRvemMmiatDKmVEjMcvRtTHnE4Oi8PmXJ2dIfTRZYqi_Hs_P6eXHfyEPDhL96RzdvrZvWRr7_eP1fLda5YyWOOdatrOadzVDVKyZuKLzhnVa0Ug67SSpVNCZIiQ9QLWdbtvMUKoGwqyrlmd-RpWnuWtpN2K3p38umMIHb771ZggsIhsaiTkk5K5V0IHjtx9Olt_yMoiAtG0YuEUVwwCmhEwpg8L5MH0wejQS-CMmgVauNRRaGd-cf9Cy7qfzo</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>MENG, Wanzhi</creator><creator>PAN, Zhuorui</creator><creator>WEN, Sixin</creator><creator>QIN, Pan</creator><creator>SUN, Ximing</creator><general>Elsevier Ltd</general><general>Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian University of Technology,Dalian 116024,China School of Control Science and Engineering,Dalian University of Technology,Dalian 116024,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-2975-2252</orcidid><orcidid>https://orcid.org/0000-0003-3160-2744</orcidid><orcidid>https://orcid.org/0000-0002-9929-1033</orcidid><orcidid>https://orcid.org/0000-0003-0545-3044</orcidid></search><sort><creationdate>202401</creationdate><title>Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network</title><author>MENG, Wanzhi ; PAN, Zhuorui ; WEN, Sixin ; QIN, Pan ; SUN, Ximing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-e8bd8a515ec8eaa4964744368cc30f6dcc2920a1e3eed7a28b5be600296144d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Embedded deployment</topic><topic>Hardware-in-the-loop testing</topic><topic>Ignition verification</topic><topic>Temporal convolutional network</topic><topic>Thrust estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MENG, Wanzhi</creatorcontrib><creatorcontrib>PAN, Zhuorui</creatorcontrib><creatorcontrib>WEN, Sixin</creatorcontrib><creatorcontrib>QIN, Pan</creatorcontrib><creatorcontrib>SUN, Ximing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MENG, Wanzhi</au><au>PAN, Zhuorui</au><au>WEN, Sixin</au><au>QIN, Pan</au><au>SUN, Ximing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>37</volume><issue>1</issue><spage>106</spage><epage>117</epage><pages>106-117</pages><issn>1000-9361</issn><abstract>Thrust estimation is a significant part of aeroengine thrust control systems. The traditional estimation methods are either low in accuracy or large in computation. To further improve the estimation effect, a thrust estimator based on Multi-layer Residual Temporal Convolutional Network (M-RTCN) is proposed. To solve the problem of dead Rectified Linear Unit (ReLU), the proposed method uses the Gaussian Error Linear Unit (GELU) activation function instead of ReLU in residual block. Then the overall architecture of the multi-layer convolutional network is adjusted by using residual connections, so that the network thrust estimation effect and memory consumption are further improved. Moreover, the comparison with seven other methods shows that the proposed method has the advantages of higher estimation accuracy and faster convergence speed. Furthermore, six neural network models are deployed in the embedded controller of the micro-turbojet engine. The Hardware-in-the-Loop (HIL) testing results demonstrate the superiority of M-RTCN in terms of estimation accuracy, memory occupation and running time. Finally, an ignition verification is conducted to confirm the expected thrust estimation and real-time performance.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2023.09.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2975-2252</orcidid><orcidid>https://orcid.org/0000-0003-3160-2744</orcidid><orcidid>https://orcid.org/0000-0002-9929-1033</orcidid><orcidid>https://orcid.org/0000-0003-0545-3044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2024-01, Vol.37 (1), p.106-117
issn 1000-9361
language eng
recordid cdi_wanfang_journals_hkxb_e202401008
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Embedded deployment
Hardware-in-the-loop testing
Ignition verification
Temporal convolutional network
Thrust estimation
title Aeroengine thrust estimation and embedded verification based on improved temporal convolutional network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aeroengine%20thrust%20estimation%20and%20embedded%20verification%20based%20on%20improved%20temporal%20convolutional%20network&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=MENG,%20Wanzhi&rft.date=2024-01&rft.volume=37&rft.issue=1&rft.spage=106&rft.epage=117&rft.pages=106-117&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2023.09.001&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202401008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202401008&rft_els_id=S1000936123003059&rfr_iscdi=true