Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty

To reduce the design burden of Aerospace Vehicles (ASVs) control systems, this paper proposes a multi-constrained robust trajectory optimization method, which provides a good front-end input for the control system. Differ from the conventional aircraft, some control performance of ASVs is not only r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2022-12, Vol.35 (12), p.226-241
Hauptverfasser: CAO, Rui, LIU, Yanbin, LU, Yuping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 12
container_start_page 226
container_title Chinese journal of aeronautics
container_volume 35
creator CAO, Rui
LIU, Yanbin
LU, Yuping
description To reduce the design burden of Aerospace Vehicles (ASVs) control systems, this paper proposes a multi-constrained robust trajectory optimization method, which provides a good front-end input for the control system. Differ from the conventional aircraft, some control performance of ASVs is not only related to the model parameters, but also affected by the flight status. Therefore, the robust optimization method combines this characteristic of ASVs, sets the control performance as one of the optimization objectives, and considers the influence of parameter uncertainty. In this method, the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem. Finally, compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.
doi_str_mv 10.1016/j.cja.2022.01.011
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202212016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202212016</wanfj_id><els_id>S1000936122000115</els_id><sourcerecordid>hkxb_e202212016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-57b6a521194cbcf4e746809bb170ab4cdfde92a6d6ebeeb6eb1d444cd214c74a3</originalsourceid><addsrcrecordid>eNp9UE1LAzEU3IOCtfoDvOXmaWteNt118STFLygIohcvIR9vbdZuUpK0tf56U-tZeLyBYeY9ZoriAugEKNRX_UT3csIoYxMKeeCoGAGltGyrGk6K0xh7Squ2AToq3l-8WsdE_CrZwX7LZL0jviPauxT8MuMwSGdI5wORGHxcSY1kgwurlxjJ1qbFL292Tg5Wk7XTGJK0Lu3OiuNOLiOe_-G4eLu_e509lvPnh6fZ7bzUFWtTOW1ULacMoOVa6Y5jw-tr2ioFDZWKa9MZbJmsTY0KUeUNhvPMM-C64bIaF5eHu1vpOuk-RO_XweWPYvH5pQTuiwCWi8lKOCh1DhIDdmIV7CDDTgAV--pEL3J1Yu8QFPJA9twcPJgjbCwGEbXFnNLYgDoJ4-0_7h-ZH3s5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>CAO, Rui ; LIU, Yanbin ; LU, Yuping</creator><creatorcontrib>CAO, Rui ; LIU, Yanbin ; LU, Yuping</creatorcontrib><description>To reduce the design burden of Aerospace Vehicles (ASVs) control systems, this paper proposes a multi-constrained robust trajectory optimization method, which provides a good front-end input for the control system. Differ from the conventional aircraft, some control performance of ASVs is not only related to the model parameters, but also affected by the flight status. Therefore, the robust optimization method combines this characteristic of ASVs, sets the control performance as one of the optimization objectives, and considers the influence of parameter uncertainty. In this method, the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem. Finally, compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2022.01.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aerospace vehicle ; Multi-objective optimization ; Polynomial chaos ; Uncertain systems</subject><ispartof>Chinese journal of aeronautics, 2022-12, Vol.35 (12), p.226-241</ispartof><rights>2022 Chinese Society of Aeronautics and Astronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-57b6a521194cbcf4e746809bb170ab4cdfde92a6d6ebeeb6eb1d444cd214c74a3</citedby><cites>FETCH-LOGICAL-c329t-57b6a521194cbcf4e746809bb170ab4cdfde92a6d6ebeeb6eb1d444cd214c74a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cja.2022.01.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>CAO, Rui</creatorcontrib><creatorcontrib>LIU, Yanbin</creatorcontrib><creatorcontrib>LU, Yuping</creatorcontrib><title>Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty</title><title>Chinese journal of aeronautics</title><description>To reduce the design burden of Aerospace Vehicles (ASVs) control systems, this paper proposes a multi-constrained robust trajectory optimization method, which provides a good front-end input for the control system. Differ from the conventional aircraft, some control performance of ASVs is not only related to the model parameters, but also affected by the flight status. Therefore, the robust optimization method combines this characteristic of ASVs, sets the control performance as one of the optimization objectives, and considers the influence of parameter uncertainty. In this method, the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem. Finally, compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.</description><subject>Aerospace vehicle</subject><subject>Multi-objective optimization</subject><subject>Polynomial chaos</subject><subject>Uncertain systems</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEU3IOCtfoDvOXmaWteNt118STFLygIohcvIR9vbdZuUpK0tf56U-tZeLyBYeY9ZoriAugEKNRX_UT3csIoYxMKeeCoGAGltGyrGk6K0xh7Squ2AToq3l-8WsdE_CrZwX7LZL0jviPauxT8MuMwSGdI5wORGHxcSY1kgwurlxjJ1qbFL292Tg5Wk7XTGJK0Lu3OiuNOLiOe_-G4eLu_e509lvPnh6fZ7bzUFWtTOW1ULacMoOVa6Y5jw-tr2ioFDZWKa9MZbJmsTY0KUeUNhvPMM-C64bIaF5eHu1vpOuk-RO_XweWPYvH5pQTuiwCWi8lKOCh1DhIDdmIV7CDDTgAV--pEL3J1Yu8QFPJA9twcPJgjbCwGEbXFnNLYgDoJ4-0_7h-ZH3s5</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>CAO, Rui</creator><creator>LIU, Yanbin</creator><creator>LU, Yuping</creator><general>Elsevier Ltd</general><general>College of Automated Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221201</creationdate><title>Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty</title><author>CAO, Rui ; LIU, Yanbin ; LU, Yuping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-57b6a521194cbcf4e746809bb170ab4cdfde92a6d6ebeeb6eb1d444cd214c74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace vehicle</topic><topic>Multi-objective optimization</topic><topic>Polynomial chaos</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CAO, Rui</creatorcontrib><creatorcontrib>LIU, Yanbin</creatorcontrib><creatorcontrib>LU, Yuping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CAO, Rui</au><au>LIU, Yanbin</au><au>LU, Yuping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>12</issue><spage>226</spage><epage>241</epage><pages>226-241</pages><issn>1000-9361</issn><abstract>To reduce the design burden of Aerospace Vehicles (ASVs) control systems, this paper proposes a multi-constrained robust trajectory optimization method, which provides a good front-end input for the control system. Differ from the conventional aircraft, some control performance of ASVs is not only related to the model parameters, but also affected by the flight status. Therefore, the robust optimization method combines this characteristic of ASVs, sets the control performance as one of the optimization objectives, and considers the influence of parameter uncertainty. In this method, the polynomial chaos expansion algorithm is used to transform the trajectory optimization problem with uncertain parameters into the equivalent deterministic robust trajectory optimization problem. Finally, compared with traditional deterministic trajectory optimization methods to illustrate the effectiveness of proposed control optimization method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2022.01.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2022-12, Vol.35 (12), p.226-241
issn 1000-9361
language eng
recordid cdi_wanfang_journals_hkxb_e202212016
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Aerospace vehicle
Multi-objective optimization
Polynomial chaos
Uncertain systems
title Robust optimization of control command for aerospace vehicles with aerodynamic uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20optimization%20of%20control%20command%20for%20aerospace%20vehicles%20with%20aerodynamic%20uncertainty&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=CAO,%20Rui&rft.date=2022-12-01&rft.volume=35&rft.issue=12&rft.spage=226&rft.epage=241&rft.pages=226-241&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2022.01.011&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202212016%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202212016&rft_els_id=S1000936122000115&rfr_iscdi=true