Optimization and analysis of composite sandwich box beam for solar drones
Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize...
Gespeichert in:
Veröffentlicht in: | Chinese journal of aeronautics 2021-10, Vol.34 (10), p.148-165 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 10 |
container_start_page | 148 |
container_title | Chinese journal of aeronautics |
container_volume | 34 |
creator | ZHANG, Liang MA, Dongli YANG, Muqing XIA, Xinglu YAO, Yuan |
description | Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones. |
doi_str_mv | 10.1016/j.cja.2020.10.023 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202110012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202110012</wanfj_id><els_id>S1000936120305525</els_id><sourcerecordid>hkxb_e202110012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhn0AibI8ADffOCV47DRxxAlVLJUq9QJnyyt1aOLKDrTl6XFUzhxGo1n-0fwfQrdASiBQ33el7mRJCZ3qklB2hmZACClaVsMFukypI4S1DZAZWq53o-_9jxx9GLAcTA65PSafcHBYh34Xkh8tTnm093qDVThgZWWPXYg4ha2M2MQw2HSNzp3cJnvzl6_Q-_PT2-K1WK1flovHVaFZQ8dCNRXTfG44NA40p6RRktVKSScdk1WlgdfUtNpRXhlWATcttFQ3is4lZ5qyK3R3uruXg5PDh-jCV8w_J7H5PChhs2_IbmHahNOmjiGlaJ3YRd_LeBRAxERKdCKTEhOpqZVJZc3DSWOzhW9vo0ja20Fb46PVozDB_6P-BZN2cs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization and analysis of composite sandwich box beam for solar drones</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</creator><creatorcontrib>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</creatorcontrib><description>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2020.10.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Buckling analysis ; Low-order analytical method ; Multi-stage optimization ; Sandwich box beam ; Solar drones</subject><ispartof>Chinese journal of aeronautics, 2021-10, Vol.34 (10), p.148-165</ispartof><rights>2021 Chinese Society of Aeronautics and Astronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</citedby><cites>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936120305525$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>ZHANG, Liang</creatorcontrib><creatorcontrib>MA, Dongli</creatorcontrib><creatorcontrib>YANG, Muqing</creatorcontrib><creatorcontrib>XIA, Xinglu</creatorcontrib><creatorcontrib>YAO, Yuan</creatorcontrib><title>Optimization and analysis of composite sandwich box beam for solar drones</title><title>Chinese journal of aeronautics</title><description>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</description><subject>Buckling analysis</subject><subject>Low-order analytical method</subject><subject>Multi-stage optimization</subject><subject>Sandwich box beam</subject><subject>Solar drones</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhn0AibI8ADffOCV47DRxxAlVLJUq9QJnyyt1aOLKDrTl6XFUzhxGo1n-0fwfQrdASiBQ33el7mRJCZ3qklB2hmZACClaVsMFukypI4S1DZAZWq53o-_9jxx9GLAcTA65PSafcHBYh34Xkh8tTnm093qDVThgZWWPXYg4ha2M2MQw2HSNzp3cJnvzl6_Q-_PT2-K1WK1flovHVaFZQ8dCNRXTfG44NA40p6RRktVKSScdk1WlgdfUtNpRXhlWATcttFQ3is4lZ5qyK3R3uruXg5PDh-jCV8w_J7H5PChhs2_IbmHahNOmjiGlaJ3YRd_LeBRAxERKdCKTEhOpqZVJZc3DSWOzhW9vo0ja20Fb46PVozDB_6P-BZN2cs8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>ZHANG, Liang</creator><creator>MA, Dongli</creator><creator>YANG, Muqing</creator><creator>XIA, Xinglu</creator><creator>YAO, Yuan</creator><general>Elsevier Ltd</general><general>School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20211001</creationdate><title>Optimization and analysis of composite sandwich box beam for solar drones</title><author>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buckling analysis</topic><topic>Low-order analytical method</topic><topic>Multi-stage optimization</topic><topic>Sandwich box beam</topic><topic>Solar drones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Liang</creatorcontrib><creatorcontrib>MA, Dongli</creatorcontrib><creatorcontrib>YANG, Muqing</creatorcontrib><creatorcontrib>XIA, Xinglu</creatorcontrib><creatorcontrib>YAO, Yuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Liang</au><au>MA, Dongli</au><au>YANG, Muqing</au><au>XIA, Xinglu</au><au>YAO, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and analysis of composite sandwich box beam for solar drones</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>34</volume><issue>10</issue><spage>148</spage><epage>165</epage><pages>148-165</pages><issn>1000-9361</issn><abstract>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2020.10.023</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9361 |
ispartof | Chinese journal of aeronautics, 2021-10, Vol.34 (10), p.148-165 |
issn | 1000-9361 |
language | eng |
recordid | cdi_wanfang_journals_hkxb_e202110012 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Buckling analysis Low-order analytical method Multi-stage optimization Sandwich box beam Solar drones |
title | Optimization and analysis of composite sandwich box beam for solar drones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20analysis%20of%20composite%20sandwich%20box%20beam%20for%20solar%20drones&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=ZHANG,%20Liang&rft.date=2021-10-01&rft.volume=34&rft.issue=10&rft.spage=148&rft.epage=165&rft.pages=148-165&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2020.10.023&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202110012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202110012&rft_els_id=S1000936120305525&rfr_iscdi=true |