Optimization and analysis of composite sandwich box beam for solar drones

Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2021-10, Vol.34 (10), p.148-165
Hauptverfasser: ZHANG, Liang, MA, Dongli, YANG, Muqing, XIA, Xinglu, YAO, Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 10
container_start_page 148
container_title Chinese journal of aeronautics
container_volume 34
creator ZHANG, Liang
MA, Dongli
YANG, Muqing
XIA, Xinglu
YAO, Yuan
description Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.
doi_str_mv 10.1016/j.cja.2020.10.023
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202110012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202110012</wanfj_id><els_id>S1000936120305525</els_id><sourcerecordid>hkxb_e202110012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhn0AibI8ADffOCV47DRxxAlVLJUq9QJnyyt1aOLKDrTl6XFUzhxGo1n-0fwfQrdASiBQ33el7mRJCZ3qklB2hmZACClaVsMFukypI4S1DZAZWq53o-_9jxx9GLAcTA65PSafcHBYh34Xkh8tTnm093qDVThgZWWPXYg4ha2M2MQw2HSNzp3cJnvzl6_Q-_PT2-K1WK1flovHVaFZQ8dCNRXTfG44NA40p6RRktVKSScdk1WlgdfUtNpRXhlWATcttFQ3is4lZ5qyK3R3uruXg5PDh-jCV8w_J7H5PChhs2_IbmHahNOmjiGlaJ3YRd_LeBRAxERKdCKTEhOpqZVJZc3DSWOzhW9vo0ja20Fb46PVozDB_6P-BZN2cs8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization and analysis of composite sandwich box beam for solar drones</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</creator><creatorcontrib>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</creatorcontrib><description>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2020.10.023</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Buckling analysis ; Low-order analytical method ; Multi-stage optimization ; Sandwich box beam ; Solar drones</subject><ispartof>Chinese journal of aeronautics, 2021-10, Vol.34 (10), p.148-165</ispartof><rights>2021 Chinese Society of Aeronautics and Astronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</citedby><cites>FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936120305525$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>ZHANG, Liang</creatorcontrib><creatorcontrib>MA, Dongli</creatorcontrib><creatorcontrib>YANG, Muqing</creatorcontrib><creatorcontrib>XIA, Xinglu</creatorcontrib><creatorcontrib>YAO, Yuan</creatorcontrib><title>Optimization and analysis of composite sandwich box beam for solar drones</title><title>Chinese journal of aeronautics</title><description>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</description><subject>Buckling analysis</subject><subject>Low-order analytical method</subject><subject>Multi-stage optimization</subject><subject>Sandwich box beam</subject><subject>Solar drones</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhn0AibI8ADffOCV47DRxxAlVLJUq9QJnyyt1aOLKDrTl6XFUzhxGo1n-0fwfQrdASiBQ33el7mRJCZ3qklB2hmZACClaVsMFukypI4S1DZAZWq53o-_9jxx9GLAcTA65PSafcHBYh34Xkh8tTnm093qDVThgZWWPXYg4ha2M2MQw2HSNzp3cJnvzl6_Q-_PT2-K1WK1flovHVaFZQ8dCNRXTfG44NA40p6RRktVKSScdk1WlgdfUtNpRXhlWATcttFQ3is4lZ5qyK3R3uruXg5PDh-jCV8w_J7H5PChhs2_IbmHahNOmjiGlaJ3YRd_LeBRAxERKdCKTEhOpqZVJZc3DSWOzhW9vo0ja20Fb46PVozDB_6P-BZN2cs8</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>ZHANG, Liang</creator><creator>MA, Dongli</creator><creator>YANG, Muqing</creator><creator>XIA, Xinglu</creator><creator>YAO, Yuan</creator><general>Elsevier Ltd</general><general>School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20211001</creationdate><title>Optimization and analysis of composite sandwich box beam for solar drones</title><author>ZHANG, Liang ; MA, Dongli ; YANG, Muqing ; XIA, Xinglu ; YAO, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b743c85d817f1c8207ba36bbafaf3a44c1862d9cf284d3418d9192c7b25a83c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Buckling analysis</topic><topic>Low-order analytical method</topic><topic>Multi-stage optimization</topic><topic>Sandwich box beam</topic><topic>Solar drones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Liang</creatorcontrib><creatorcontrib>MA, Dongli</creatorcontrib><creatorcontrib>YANG, Muqing</creatorcontrib><creatorcontrib>XIA, Xinglu</creatorcontrib><creatorcontrib>YAO, Yuan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Liang</au><au>MA, Dongli</au><au>YANG, Muqing</au><au>XIA, Xinglu</au><au>YAO, Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization and analysis of composite sandwich box beam for solar drones</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2021-10-01</date><risdate>2021</risdate><volume>34</volume><issue>10</issue><spage>148</spage><epage>165</epage><pages>148-165</pages><issn>1000-9361</issn><abstract>Solar drones have garnered considerably research attention in recent years due to their continuous cruising capability, and the feasibility of design schemes is sensitive to the weight of structure. Sandwich box beam composed of carbon fiber and polymethacrylimide (PMI) foam is conducive to realize the lightweight of structure. In this study, a two-stage optimization design methodology for sandwich box beam is proposed. This methodology is primarily based on a low-order analytical method for evaluating stress/deflection and the linear buckling analysis method combined with experimental correction factor for predicting the buckling eigenvalues. Subsequently, a case study was conducted using an 18-m wingspan solar drone, where the results of mechanical test verified the optimization results. For validating the use of sandwich box beam in solar drones of other scales, additional analysis was conducted based on three aspects: (A) effects of stiffness and stability constraints on the design of sandwich box beam; (B) crucial role of the weight of foam inter layer and application scope of sandwich box beam; (C) best method to improve the buckling eigenvalue of sandwich box beam. Overall, the methodology and general rules presented in this paper can support the design of light wing beam for solar drones.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2020.10.023</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2021-10, Vol.34 (10), p.148-165
issn 1000-9361
language eng
recordid cdi_wanfang_journals_hkxb_e202110012
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Buckling analysis
Low-order analytical method
Multi-stage optimization
Sandwich box beam
Solar drones
title Optimization and analysis of composite sandwich box beam for solar drones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A20%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20and%20analysis%20of%20composite%20sandwich%20box%20beam%20for%20solar%20drones&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=ZHANG,%20Liang&rft.date=2021-10-01&rft.volume=34&rft.issue=10&rft.spage=148&rft.epage=165&rft.pages=148-165&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2020.10.023&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202110012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202110012&rft_els_id=S1000936120305525&rfr_iscdi=true