Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air

When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of aeronautics 2007-02, Vol.20 (1), p.29-39
Hauptverfasser: Toufik, Zebbiche, ZineEddine, Youbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 29
container_title Chinese journal of aeronautics
container_volume 20
creator Toufik, Zebbiche
ZineEddine, Youbi
description When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.
doi_str_mv 10.1016/S1000-9361(07)60004-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e200701004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e200701004</wanfj_id><els_id>S1000936107600041</els_id><sourcerecordid>hkxb_e200701004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-e07d88c1fce437ad7af1c659f6bd3b007382179fe52822abd961083c3ccf6d883</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRbMAiecnIHnFYxEYx20eK1S1vKQCi5a1cZ1x65LYwU4o9OtxKWLLajSjc680J4pOKFxSoOnVhAJAXLCUnkN2kYalF9OdaP_vvBcdeL8EYEVGYT96nXQNOm-NlmS6svFI12i8tkZU5FEbXXc1GaOZtwvyZNfrCskIvZ4bIlpyr-cLMsU6FIi2c3hJBk1TaSnakCfKOjLQ7ijaVaLyePw7D6OX25vp8D4eP989DAfjWPZo0cYIWZnnkiqJPZaJMhOKyrRfqHRWshlAxvKEZoXCfpIniZiVRUohZ5JJqdKQZIfR2bZ3JYwSZs6XtnPhC88Xb58zjknogGChF8jTLdk4-96hb3mtvcSqEgZt53lSFAz6CQ1gfwtKZ713qHjjdC3cF6fAN7b5j22-0coh4z-2-SZ3vc1h-PdDo-NeajQSS-1Qtry0-p-Gb528iLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29930521</pqid></control><display><type>article</type><title>Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Toufik, Zebbiche ; ZineEddine, Youbi</creator><creatorcontrib>Toufik, Zebbiche ; ZineEddine, Youbi</creatorcontrib><description>When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/S1000-9361(07)60004-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>calorically imperfect gas ; conception ; interpolation ; method of characteristics ; minimum length nozzle ; Prandtl Meyer function ; Simpson quadrature ; stretching function ; supersonic flow ; supersonic parameters</subject><ispartof>Chinese journal of aeronautics, 2007-02, Vol.20 (1), p.29-39</ispartof><rights>2007 Chinese Journal of Aeronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-e07d88c1fce437ad7af1c659f6bd3b007382179fe52822abd961083c3ccf6d883</citedby><cites>FETCH-LOGICAL-c419t-e07d88c1fce437ad7af1c659f6bd3b007382179fe52822abd961083c3ccf6d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1000-9361(07)60004-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Toufik, Zebbiche</creatorcontrib><creatorcontrib>ZineEddine, Youbi</creatorcontrib><title>Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air</title><title>Chinese journal of aeronautics</title><description>When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.</description><subject>calorically imperfect gas</subject><subject>conception</subject><subject>interpolation</subject><subject>method of characteristics</subject><subject>minimum length nozzle</subject><subject>Prandtl Meyer function</subject><subject>Simpson quadrature</subject><subject>stretching function</subject><subject>supersonic flow</subject><subject>supersonic parameters</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRbMAiecnIHnFYxEYx20eK1S1vKQCi5a1cZ1x65LYwU4o9OtxKWLLajSjc680J4pOKFxSoOnVhAJAXLCUnkN2kYalF9OdaP_vvBcdeL8EYEVGYT96nXQNOm-NlmS6svFI12i8tkZU5FEbXXc1GaOZtwvyZNfrCskIvZ4bIlpyr-cLMsU6FIi2c3hJBk1TaSnakCfKOjLQ7ijaVaLyePw7D6OX25vp8D4eP989DAfjWPZo0cYIWZnnkiqJPZaJMhOKyrRfqHRWshlAxvKEZoXCfpIniZiVRUohZ5JJqdKQZIfR2bZ3JYwSZs6XtnPhC88Xb58zjknogGChF8jTLdk4-96hb3mtvcSqEgZt53lSFAz6CQ1gfwtKZ713qHjjdC3cF6fAN7b5j22-0coh4z-2-SZ3vc1h-PdDo-NeajQSS-1Qtry0-p-Gb528iLA</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Toufik, Zebbiche</creator><creator>ZineEddine, Youbi</creator><general>Elsevier Ltd</general><general>Department of Aeronautics, Faculty of Sciences of Engineer, University SAAD Dahleb of Blida,B.P. 270 Ouled Yaich, 09470 Blida, Algeria</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20070201</creationdate><title>Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air</title><author>Toufik, Zebbiche ; ZineEddine, Youbi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-e07d88c1fce437ad7af1c659f6bd3b007382179fe52822abd961083c3ccf6d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>calorically imperfect gas</topic><topic>conception</topic><topic>interpolation</topic><topic>method of characteristics</topic><topic>minimum length nozzle</topic><topic>Prandtl Meyer function</topic><topic>Simpson quadrature</topic><topic>stretching function</topic><topic>supersonic flow</topic><topic>supersonic parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toufik, Zebbiche</creatorcontrib><creatorcontrib>ZineEddine, Youbi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toufik, Zebbiche</au><au>ZineEddine, Youbi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>20</volume><issue>1</issue><spage>29</spage><epage>39</epage><pages>29-39</pages><issn>1000-9361</issn><abstract>When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of finite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1000-9361(07)60004-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2007-02, Vol.20 (1), p.29-39
issn 1000-9361
language eng
recordid cdi_wanfang_journals_hkxb_e200701004
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects calorically imperfect gas
conception
interpolation
method of characteristics
minimum length nozzle
Prandtl Meyer function
Simpson quadrature
stretching function
supersonic flow
supersonic parameters
title Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supersonic%20Two-Dimensional%20Minimum%20Length%20Nozzle%20Design%20at%20High%20Temperature.%20Application%20for%20Air&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=Toufik,%20Zebbiche&rft.date=2007-02-01&rft.volume=20&rft.issue=1&rft.spage=29&rft.epage=39&rft.pages=29-39&rft.issn=1000-9361&rft_id=info:doi/10.1016/S1000-9361(07)60004-1&rft_dat=%3Cwanfang_jour_proqu%3Ehkxb_e200701004%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29930521&rft_id=info:pmid/&rft_wanfj_id=hkxb_e200701004&rft_els_id=S1000936107600041&rfr_iscdi=true