Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors

A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear science and techniques 2023-08, Vol.34 (8), p.92-102, Article 122
Hauptverfasser: Xie, Jia-Nan, Jiang, Hui, Li, Ai-Guo, Tian, Na-Xi, Yan, Shuai, Liang, Dong-Xu, Hu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 8
container_start_page 92
container_title Nuclear science and techniques
container_volume 34
creator Xie, Jia-Nan
Jiang, Hui
Li, Ai-Guo
Tian, Na-Xi
Yan, Shuai
Liang, Dong-Xu
Hu, Jun
description A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature enhancement. The smallest normalized root-mean-square error on the validation set was 4%. Compared with conventional alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron radiation beamlines.
doi_str_mv 10.1007/s41365-023-01282-4
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hjs_e202308008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hjs_e202308008</wanfj_id><sourcerecordid>hjs_e202308008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-e318a9749af971e9f892f6f2c8a04b8f54faf4f595bd1ef2ae2e22521719ad643</originalsourceid><addsrcrecordid>eNp9kLtOxDAQRS0EEsvCD1C5ojPYYyexS1jeINFAbXmz45B9OCs7CEHFP_CHfAlegkRHNRrp3DuaQ8ih4MeC8-okKSHLgnGQjAvQwNQWGQEIzqRQ1TYZZUowzRXskr2U5pwrVRZmRG7PEdd0iS6GNjTUd5Fi6tuV69su0M7TuzYu1q6Pbb34-vg8c_hOV22MmXPLtgkrDD3FzZ72yY53y4QHv3NMni4vHifX7P7h6mZyes9qCdAzlEI7UynjvKkEGq8N-NJDrR1XU-0L5Z1XvjDFdCbQg0NAgAJEJYyblUqOydHQ--qCd6Gx8-4lhnzRPs-TRcgSuOZcZxAGsI5dShG9Xcf8WXyzgtuNNjtoszlhf7TZTbscQinDocH4V_9P6hvRjXFO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xie, Jia-Nan ; Jiang, Hui ; Li, Ai-Guo ; Tian, Na-Xi ; Yan, Shuai ; Liang, Dong-Xu ; Hu, Jun</creator><creatorcontrib>Xie, Jia-Nan ; Jiang, Hui ; Li, Ai-Guo ; Tian, Na-Xi ; Yan, Shuai ; Liang, Dong-Xu ; Hu, Jun</creatorcontrib><description>A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature enhancement. The smallest normalized root-mean-square error on the validation set was 4%. Compared with conventional alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron radiation beamlines.</description><identifier>ISSN: 1001-8042</identifier><identifier>EISSN: 2210-3147</identifier><identifier>DOI: 10.1007/s41365-023-01282-4</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Beam Physics ; Nuclear Energy ; Particle Acceleration and Detection ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy</subject><ispartof>Nuclear science and techniques, 2023-08, Vol.34 (8), p.92-102, Article 122</ispartof><rights>The Author(s), under exclusive licence to China Science Publishing &amp; Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-e318a9749af971e9f892f6f2c8a04b8f54faf4f595bd1ef2ae2e22521719ad643</citedby><cites>FETCH-LOGICAL-c322t-e318a9749af971e9f892f6f2c8a04b8f54faf4f595bd1ef2ae2e22521719ad643</cites><orcidid>0000-0002-4782-5072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hjs-e/hjs-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41365-023-01282-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41365-023-01282-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xie, Jia-Nan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Li, Ai-Guo</creatorcontrib><creatorcontrib>Tian, Na-Xi</creatorcontrib><creatorcontrib>Yan, Shuai</creatorcontrib><creatorcontrib>Liang, Dong-Xu</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><title>Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors</title><title>Nuclear science and techniques</title><addtitle>NUCL SCI TECH</addtitle><description>A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature enhancement. The smallest normalized root-mean-square error on the validation set was 4%. Compared with conventional alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron radiation beamlines.</description><subject>Beam Physics</subject><subject>Nuclear Energy</subject><subject>Particle Acceleration and Detection</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>1001-8042</issn><issn>2210-3147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOxDAQRS0EEsvCD1C5ojPYYyexS1jeINFAbXmz45B9OCs7CEHFP_CHfAlegkRHNRrp3DuaQ8ih4MeC8-okKSHLgnGQjAvQwNQWGQEIzqRQ1TYZZUowzRXskr2U5pwrVRZmRG7PEdd0iS6GNjTUd5Fi6tuV69su0M7TuzYu1q6Pbb34-vg8c_hOV22MmXPLtgkrDD3FzZ72yY53y4QHv3NMni4vHifX7P7h6mZyes9qCdAzlEI7UynjvKkEGq8N-NJDrR1XU-0L5Z1XvjDFdCbQg0NAgAJEJYyblUqOydHQ--qCd6Gx8-4lhnzRPs-TRcgSuOZcZxAGsI5dShG9Xcf8WXyzgtuNNjtoszlhf7TZTbscQinDocH4V_9P6hvRjXFO</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Xie, Jia-Nan</creator><creator>Jiang, Hui</creator><creator>Li, Ai-Guo</creator><creator>Tian, Na-Xi</creator><creator>Yan, Shuai</creator><creator>Liang, Dong-Xu</creator><creator>Hu, Jun</creator><general>Springer Nature Singapore</general><general>Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China</general><general>ShanghaiTech University,Shanghai 201210,China%Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China</general><general>Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Shanghai Synchrotron Radiation Facility,Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201204,China%ShanghaiTech University,Shanghai 201210,China</general><general>ShanghaiTech University,Shanghai 201210,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-4782-5072</orcidid></search><sort><creationdate>20230801</creationdate><title>Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors</title><author>Xie, Jia-Nan ; Jiang, Hui ; Li, Ai-Guo ; Tian, Na-Xi ; Yan, Shuai ; Liang, Dong-Xu ; Hu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-e318a9749af971e9f892f6f2c8a04b8f54faf4f595bd1ef2ae2e22521719ad643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Beam Physics</topic><topic>Nuclear Energy</topic><topic>Particle Acceleration and Detection</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Jia-Nan</creatorcontrib><creatorcontrib>Jiang, Hui</creatorcontrib><creatorcontrib>Li, Ai-Guo</creatorcontrib><creatorcontrib>Tian, Na-Xi</creatorcontrib><creatorcontrib>Yan, Shuai</creatorcontrib><creatorcontrib>Liang, Dong-Xu</creatorcontrib><creatorcontrib>Hu, Jun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Nuclear science and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Jia-Nan</au><au>Jiang, Hui</au><au>Li, Ai-Guo</au><au>Tian, Na-Xi</au><au>Yan, Shuai</au><au>Liang, Dong-Xu</au><au>Hu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors</atitle><jtitle>Nuclear science and techniques</jtitle><stitle>NUCL SCI TECH</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>34</volume><issue>8</issue><spage>92</spage><epage>102</epage><pages>92-102</pages><artnum>122</artnum><issn>1001-8042</issn><eissn>2210-3147</eissn><abstract>A deep learning-based automated Kirkpatrick–Baez mirror alignment method is proposed for synchrotron radiation. We trained a convolutional neural network (CNN) on simulated and experimental imaging data of a focusing system. Instead of learning directly from bypass images, we use a scatterer for X-ray modulation and speckle generation for image feature enhancement. The smallest normalized root-mean-square error on the validation set was 4%. Compared with conventional alignment methods based on motor scanning and analyzer setups, the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment. Single-shot misalignment error estimation only took 0.13 s, significantly outperforming conventional methods. We also demonstrated the effects of the beam quality and pretraining using experimental data. The proposed method exhibited strong robustness, can handle high-precision focusing systems with complex or dynamic wavefront errors, and provides an important basis for intelligent control of future synchrotron radiation beamlines.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41365-023-01282-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4782-5072</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-8042
ispartof Nuclear science and techniques, 2023-08, Vol.34 (8), p.92-102, Article 122
issn 1001-8042
2210-3147
language eng
recordid cdi_wanfang_journals_hjs_e202308008
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Beam Physics
Nuclear Energy
Particle Acceleration and Detection
Particle and Nuclear Physics
Physics
Physics and Astronomy
title Deep learning for estimation of Kirkpatrick–Baez mirror alignment errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20estimation%20of%20Kirkpatrick%E2%80%93Baez%20mirror%20alignment%20errors&rft.jtitle=Nuclear%20science%20and%20techniques&rft.au=Xie,%20Jia-Nan&rft.date=2023-08-01&rft.volume=34&rft.issue=8&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.artnum=122&rft.issn=1001-8042&rft.eissn=2210-3147&rft_id=info:doi/10.1007/s41365-023-01282-4&rft_dat=%3Cwanfang_jour_cross%3Ehjs_e202308008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hjs_e202308008&rfr_iscdi=true