Improvements in methodology to determine feedback reactivity coefficients
The reactivity of a nuclear reactor is the most important safety and operating parameter. Due to short reactor period, the Light Water Reactor (LWR) designs require the compensations of rapid unfavorable reactivity increases. The increase in fuel or moderator temperature leads to compensate the reac...
Gespeichert in:
Veröffentlicht in: | Nuclear science and techniques 2019-04, Vol.30 (4), p.91-104, Article 63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104 |
---|---|
container_issue | 4 |
container_start_page | 91 |
container_title | Nuclear science and techniques |
container_volume | 30 |
creator | Qayyum, Faisal Ali, Muhammad Rizwan Zahur, Awais Khan, R. |
description | The reactivity of a nuclear reactor is the most important safety and operating parameter. Due to short reactor period, the Light Water Reactor (LWR) designs require the compensations of rapid unfavorable reactivity increases. The increase in fuel or moderator temperature leads to compensate the reactivity jumps as inherent safety characteristics. The safe and reliable reactor operation requires the accurate assessment of these reactivity changes. This paper highlights the improvements in the methodology to determine the feedback reactivity changes in IAEA MTR benchmark. This method incorporates the reactivity effects of fuel temperature in moderator regions and vice versa. For this purpose, a detailed 3D model of the IAEA 10 MW MTR benchmark reactor is developed employing OpenMC computer code. OpenMC is a probabilistic computer code for neutronic calculations. This work uses temperature-dependent JEFF 3.2 cross-sectional library. The model is validated against the reference results of eigenvalues for control rods (inserted and in fully withdrawn position), control rod reactivity worth, averaged thermal flux in the central flux trap, and power fraction for each fuel element at beginning of life. The validated model is applied to simulate the feedback reactivity coefficients against the conventional reference results. In order to improve the methodology, the effect of the moderator temperature and void on fuel is incorporated to obtain a more realistic value of the fuel temperature coefficient. Similarly, the moderator temperature coefficient and void coefficient are improved by incorporating the coupling effects of fuel temperature on moderator. This methodology can be applied to improve the LWR designs. |
doi_str_mv | 10.1007/s41365-019-0588-0 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hjs_e201904011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hjs_e201904011</wanfj_id><sourcerecordid>hjs_e201904011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e28e1906be68a3e0de08abfb003cac37618d73a158ebddf8ae59c8ff93a73e7e3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEqXwA9g8sRnujfNwRlTxqFSJBWbLca5blyau7FDUf0-qIDEx3eWc70qHsVuEewSoHlKOsiwEYC2gUErAGZtlGYKQmFfnbDZCKBTk2SW7SmkLkOdlUc_YctntYzhQR_2QuO95R8MmtGEX1kc-BN7SQLHzPXFH1DbGfvJIxg7-4Icjt4Gc89af5Gt24cwu0c3vnbOP56f3xatYvb0sF48rYSXWg6BMEdZQNlQqIwlaAmUa1wBIa6ysSlRtJQ0Wipq2dcpQUVvlXC1NJakiOWd30-636Z3p13obvmI_ftSbbdKUjQkgB8QRxAm0MaQUyel99J2JR42gT9H0FE2Phj5F0zA62eSkke3XFP_W_5d-AH_2cQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvements in methodology to determine feedback reactivity coefficients</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Qayyum, Faisal ; Ali, Muhammad Rizwan ; Zahur, Awais ; Khan, R.</creator><creatorcontrib>Qayyum, Faisal ; Ali, Muhammad Rizwan ; Zahur, Awais ; Khan, R.</creatorcontrib><description>The reactivity of a nuclear reactor is the most important safety and operating parameter. Due to short reactor period, the Light Water Reactor (LWR) designs require the compensations of rapid unfavorable reactivity increases. The increase in fuel or moderator temperature leads to compensate the reactivity jumps as inherent safety characteristics. The safe and reliable reactor operation requires the accurate assessment of these reactivity changes. This paper highlights the improvements in the methodology to determine the feedback reactivity changes in IAEA MTR benchmark. This method incorporates the reactivity effects of fuel temperature in moderator regions and vice versa. For this purpose, a detailed 3D model of the IAEA 10 MW MTR benchmark reactor is developed employing OpenMC computer code. OpenMC is a probabilistic computer code for neutronic calculations. This work uses temperature-dependent JEFF 3.2 cross-sectional library. The model is validated against the reference results of eigenvalues for control rods (inserted and in fully withdrawn position), control rod reactivity worth, averaged thermal flux in the central flux trap, and power fraction for each fuel element at beginning of life. The validated model is applied to simulate the feedback reactivity coefficients against the conventional reference results. In order to improve the methodology, the effect of the moderator temperature and void on fuel is incorporated to obtain a more realistic value of the fuel temperature coefficient. Similarly, the moderator temperature coefficient and void coefficient are improved by incorporating the coupling effects of fuel temperature on moderator. This methodology can be applied to improve the LWR designs.</description><identifier>ISSN: 1001-8042</identifier><identifier>EISSN: 2210-3147</identifier><identifier>DOI: 10.1007/s41365-019-0588-0</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Energy ; Hadrons ; Heavy Ions ; Nuclear Energy ; Nuclear Physics</subject><ispartof>Nuclear science and techniques, 2019-04, Vol.30 (4), p.91-104, Article 63</ispartof><rights>China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e28e1906be68a3e0de08abfb003cac37618d73a158ebddf8ae59c8ff93a73e7e3</citedby><cites>FETCH-LOGICAL-c319t-e28e1906be68a3e0de08abfb003cac37618d73a158ebddf8ae59c8ff93a73e7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hjs-e/hjs-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41365-019-0588-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s41365-019-0588-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Qayyum, Faisal</creatorcontrib><creatorcontrib>Ali, Muhammad Rizwan</creatorcontrib><creatorcontrib>Zahur, Awais</creatorcontrib><creatorcontrib>Khan, R.</creatorcontrib><title>Improvements in methodology to determine feedback reactivity coefficients</title><title>Nuclear science and techniques</title><addtitle>NUCL SCI TECH</addtitle><description>The reactivity of a nuclear reactor is the most important safety and operating parameter. Due to short reactor period, the Light Water Reactor (LWR) designs require the compensations of rapid unfavorable reactivity increases. The increase in fuel or moderator temperature leads to compensate the reactivity jumps as inherent safety characteristics. The safe and reliable reactor operation requires the accurate assessment of these reactivity changes. This paper highlights the improvements in the methodology to determine the feedback reactivity changes in IAEA MTR benchmark. This method incorporates the reactivity effects of fuel temperature in moderator regions and vice versa. For this purpose, a detailed 3D model of the IAEA 10 MW MTR benchmark reactor is developed employing OpenMC computer code. OpenMC is a probabilistic computer code for neutronic calculations. This work uses temperature-dependent JEFF 3.2 cross-sectional library. The model is validated against the reference results of eigenvalues for control rods (inserted and in fully withdrawn position), control rod reactivity worth, averaged thermal flux in the central flux trap, and power fraction for each fuel element at beginning of life. The validated model is applied to simulate the feedback reactivity coefficients against the conventional reference results. In order to improve the methodology, the effect of the moderator temperature and void on fuel is incorporated to obtain a more realistic value of the fuel temperature coefficient. Similarly, the moderator temperature coefficient and void coefficient are improved by incorporating the coupling effects of fuel temperature on moderator. This methodology can be applied to improve the LWR designs.</description><subject>Energy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><issn>1001-8042</issn><issn>2210-3147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EEqXwA9g8sRnujfNwRlTxqFSJBWbLca5blyau7FDUf0-qIDEx3eWc70qHsVuEewSoHlKOsiwEYC2gUErAGZtlGYKQmFfnbDZCKBTk2SW7SmkLkOdlUc_YctntYzhQR_2QuO95R8MmtGEX1kc-BN7SQLHzPXFH1DbGfvJIxg7-4Icjt4Gc89af5Gt24cwu0c3vnbOP56f3xatYvb0sF48rYSXWg6BMEdZQNlQqIwlaAmUa1wBIa6ysSlRtJQ0Wipq2dcpQUVvlXC1NJakiOWd30-636Z3p13obvmI_ftSbbdKUjQkgB8QRxAm0MaQUyel99J2JR42gT9H0FE2Phj5F0zA62eSkke3XFP_W_5d-AH_2cQQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Qayyum, Faisal</creator><creator>Ali, Muhammad Rizwan</creator><creator>Zahur, Awais</creator><creator>Khan, R.</creator><general>Springer Singapore</general><general>Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190401</creationdate><title>Improvements in methodology to determine feedback reactivity coefficients</title><author>Qayyum, Faisal ; Ali, Muhammad Rizwan ; Zahur, Awais ; Khan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e28e1906be68a3e0de08abfb003cac37618d73a158ebddf8ae59c8ff93a73e7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Energy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qayyum, Faisal</creatorcontrib><creatorcontrib>Ali, Muhammad Rizwan</creatorcontrib><creatorcontrib>Zahur, Awais</creatorcontrib><creatorcontrib>Khan, R.</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Nuclear science and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qayyum, Faisal</au><au>Ali, Muhammad Rizwan</au><au>Zahur, Awais</au><au>Khan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvements in methodology to determine feedback reactivity coefficients</atitle><jtitle>Nuclear science and techniques</jtitle><stitle>NUCL SCI TECH</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>4</issue><spage>91</spage><epage>104</epage><pages>91-104</pages><artnum>63</artnum><issn>1001-8042</issn><eissn>2210-3147</eissn><abstract>The reactivity of a nuclear reactor is the most important safety and operating parameter. Due to short reactor period, the Light Water Reactor (LWR) designs require the compensations of rapid unfavorable reactivity increases. The increase in fuel or moderator temperature leads to compensate the reactivity jumps as inherent safety characteristics. The safe and reliable reactor operation requires the accurate assessment of these reactivity changes. This paper highlights the improvements in the methodology to determine the feedback reactivity changes in IAEA MTR benchmark. This method incorporates the reactivity effects of fuel temperature in moderator regions and vice versa. For this purpose, a detailed 3D model of the IAEA 10 MW MTR benchmark reactor is developed employing OpenMC computer code. OpenMC is a probabilistic computer code for neutronic calculations. This work uses temperature-dependent JEFF 3.2 cross-sectional library. The model is validated against the reference results of eigenvalues for control rods (inserted and in fully withdrawn position), control rod reactivity worth, averaged thermal flux in the central flux trap, and power fraction for each fuel element at beginning of life. The validated model is applied to simulate the feedback reactivity coefficients against the conventional reference results. In order to improve the methodology, the effect of the moderator temperature and void on fuel is incorporated to obtain a more realistic value of the fuel temperature coefficient. Similarly, the moderator temperature coefficient and void coefficient are improved by incorporating the coupling effects of fuel temperature on moderator. This methodology can be applied to improve the LWR designs.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41365-019-0588-0</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-8042 |
ispartof | Nuclear science and techniques, 2019-04, Vol.30 (4), p.91-104, Article 63 |
issn | 1001-8042 2210-3147 |
language | eng |
recordid | cdi_wanfang_journals_hjs_e201904011 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Energy Hadrons Heavy Ions Nuclear Energy Nuclear Physics |
title | Improvements in methodology to determine feedback reactivity coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvements%20in%20methodology%20to%20determine%20feedback%20reactivity%20coefficients&rft.jtitle=Nuclear%20science%20and%20techniques&rft.au=Qayyum,%20Faisal&rft.date=2019-04-01&rft.volume=30&rft.issue=4&rft.spage=91&rft.epage=104&rft.pages=91-104&rft.artnum=63&rft.issn=1001-8042&rft.eissn=2210-3147&rft_id=info:doi/10.1007/s41365-019-0588-0&rft_dat=%3Cwanfang_jour_cross%3Ehjs_e201904011%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hjs_e201904011&rfr_iscdi=true |