基于地理探测器的广州市大气PM2.5浓度驱动因素分析

X513; PM2.5变化的驱动因素是大气PM2.5研究的重要内容.为了揭示PM2.5污染的特点及其驱动影响因子,以广州市为例,采用地理探测器方法探测自然因素(包括平均降水量、平均温度、平均气压、平均相对湿度、平均风速、植被指数)与社会经济因素(包括人口密度、国内生产总值、工业总产值、人均公园绿地面积、公交车辆数、电力消费量)对2015年广州市ρ(PM2.5)变化的影响机制与差异.结果表明:①基于因子探测分析发现,对ρ(PM2.5)变化影响最大的前三位驱动因素分别为植被指数、公交车辆数与电力消费量,对应的因子影响程度指标值分别为0.51、0.46、0.40.②基于生态探测分析发现,植被指数与其...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:环境科学研究 2020-02, Vol.33 (2), p.271-279
Hauptverfasser: 周敏丹, 匡耀求, 云国梁
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X513; PM2.5变化的驱动因素是大气PM2.5研究的重要内容.为了揭示PM2.5污染的特点及其驱动影响因子,以广州市为例,采用地理探测器方法探测自然因素(包括平均降水量、平均温度、平均气压、平均相对湿度、平均风速、植被指数)与社会经济因素(包括人口密度、国内生产总值、工业总产值、人均公园绿地面积、公交车辆数、电力消费量)对2015年广州市ρ(PM2.5)变化的影响机制与差异.结果表明:①基于因子探测分析发现,对ρ(PM2.5)变化影响最大的前三位驱动因素分别为植被指数、公交车辆数与电力消费量,对应的因子影响程度指标值分别为0.51、0.46、0.40.②基于生态探测分析发现,植被指数与其他自然因素(如平均温度、平均降水量、平均气压等)对ρ(PM2.5)空间分布的影响均存在显著差异,与所有社会经济因素对ρ(PM2.5)空间分布的影响均不存在显著差异;除植被指数外,公交车辆数与其他自然因素及社会经济因素对ρ(PM2.5)空间分布的影响均存在显著差异.③基于交互探测分析发现,所有影响因素(包括自然因素与社会经济因素)对ρ(PM2.5)变化的交互作用均大于单一影响因素的独自作用,其中平均降水量与平均气压交互作用后对ρ(PM2.5)变化的影响最大.研究显示,自然因素(尤其是植被指数、平均降水量)及自然因素与人为活动(如交通出行、电力消费等)交互效应对广州市ρ(PM2.5)的变化起决定性作用.
ISSN:1001-6929
DOI:10.13198/j.issn.1001-6929.2019.10.01