Image Steganalysis System optimization Based on Boundary Samples

In the image steganalysis,the training samples often determine the performance of the model when the features and classification are in the same condition.However the existing research on steganalysis lacks the in-depth study of the classifier's training method which may deeply influence the detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:哈尔滨工业大学学报(英文版) 2014-12, Vol.21 (6), p.57-62
1. Verfasser: Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 6
container_start_page 57
container_title 哈尔滨工业大学学报(英文版)
container_volume 21
creator Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou
description In the image steganalysis,the training samples often determine the performance of the model when the features and classification are in the same condition.However the existing research on steganalysis lacks the in-depth study of the classifier's training method which may deeply influence the detection performance.This paper provides an optimization of universal steganalysis based on the boundary samples classification concerning about image steganalysis.This paper proposes a strategy of selecting boundary samples in steganalysis and divides the training samples into good samples,poor samples and boundary samples three categories and then chose the optimal threshold to get boundary samples through experiments.The experimental results show the effectiveness of boundary sample,which dramatically improve detection capability especially for the low embedding rate Stego-image.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_hebgydxxb_e201406011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>663564903</cqvip_id><wanfj_id>hebgydxxb_e201406011</wanfj_id><sourcerecordid>hebgydxxb_e201406011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1341-3de0e4a5a4660156388654d61f1ddb560fccc87533b6767c51045bcad5a4a6d33</originalsourceid><addsrcrecordid>eNotjstOwzAURLMAiVL4B4s1ka6xfZPsgIpHpUosAuvoxnZSV4kT6lQ0fD2uympmceZoLpIFB1Bpwbm4Sq5D2AGIogBcJI_rnlrLysm25KmbgwusnMNkezaMk-vdL01u8OyZgjXsVIaDN7SfWUn92Nlwk1w21AV7-5_L5Ov15XP1nm4-3tarp02quZA8FcaClaRIIgJXKPIclTTIG25MrRAarXWeKSFqzDDTioNUtSYTF4RGiGVyf_b-kG_It9VuOOzj41Btbd3O5nisK_sAXEL084jfnXG9HXz77eJg3Ls-Hq8QhUJZgBB_z2lS9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Image Steganalysis System optimization Based on Boundary Samples</title><source>Alma/SFX Local Collection</source><creator>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</creator><creatorcontrib>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</creatorcontrib><description>In the image steganalysis,the training samples often determine the performance of the model when the features and classification are in the same condition.However the existing research on steganalysis lacks the in-depth study of the classifier's training method which may deeply influence the detection performance.This paper provides an optimization of universal steganalysis based on the boundary samples classification concerning about image steganalysis.This paper proposes a strategy of selecting boundary samples in steganalysis and divides the training samples into good samples,poor samples and boundary samples three categories and then chose the optimal threshold to get boundary samples through experiments.The experimental results show the effectiveness of boundary sample,which dramatically improve detection capability especially for the low embedding rate Stego-image.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><publisher>School of Computer, Wuhan University, Wuhan 430072, China</publisher><ispartof>哈尔滨工业大学学报(英文版), 2014-12, Vol.21 (6), p.57-62</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</creatorcontrib><title>Image Steganalysis System optimization Based on Boundary Samples</title><title>哈尔滨工业大学学报(英文版)</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>In the image steganalysis,the training samples often determine the performance of the model when the features and classification are in the same condition.However the existing research on steganalysis lacks the in-depth study of the classifier's training method which may deeply influence the detection performance.This paper provides an optimization of universal steganalysis based on the boundary samples classification concerning about image steganalysis.This paper proposes a strategy of selecting boundary samples in steganalysis and divides the training samples into good samples,poor samples and boundary samples three categories and then chose the optimal threshold to get boundary samples through experiments.The experimental results show the effectiveness of boundary sample,which dramatically improve detection capability especially for the low embedding rate Stego-image.</description><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotjstOwzAURLMAiVL4B4s1ka6xfZPsgIpHpUosAuvoxnZSV4kT6lQ0fD2uympmceZoLpIFB1Bpwbm4Sq5D2AGIogBcJI_rnlrLysm25KmbgwusnMNkezaMk-vdL01u8OyZgjXsVIaDN7SfWUn92Nlwk1w21AV7-5_L5Ov15XP1nm4-3tarp02quZA8FcaClaRIIgJXKPIclTTIG25MrRAarXWeKSFqzDDTioNUtSYTF4RGiGVyf_b-kG_It9VuOOzj41Btbd3O5nisK_sAXEL084jfnXG9HXz77eJg3Ls-Hq8QhUJZgBB_z2lS9g</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</creator><general>School of Computer, Wuhan University, Wuhan 430072, China</general><general>Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education,Wuhan University, Wuhan 430072, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141201</creationdate><title>Image Steganalysis System optimization Based on Boundary Samples</title><author>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1341-3de0e4a5a4660156388654d61f1ddb560fccc87533b6767c51045bcad5a4a6d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>哈尔滨工业大学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li-Na Wang Min-Jie Wang Ting-Ting Zhu Qing Dou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Steganalysis System optimization Based on Boundary Samples</atitle><jtitle>哈尔滨工业大学学报(英文版)</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2014-12-01</date><risdate>2014</risdate><volume>21</volume><issue>6</issue><spage>57</spage><epage>62</epage><pages>57-62</pages><issn>1005-9113</issn><abstract>In the image steganalysis,the training samples often determine the performance of the model when the features and classification are in the same condition.However the existing research on steganalysis lacks the in-depth study of the classifier's training method which may deeply influence the detection performance.This paper provides an optimization of universal steganalysis based on the boundary samples classification concerning about image steganalysis.This paper proposes a strategy of selecting boundary samples in steganalysis and divides the training samples into good samples,poor samples and boundary samples three categories and then chose the optimal threshold to get boundary samples through experiments.The experimental results show the effectiveness of boundary sample,which dramatically improve detection capability especially for the low embedding rate Stego-image.</abstract><pub>School of Computer, Wuhan University, Wuhan 430072, China</pub><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-9113
ispartof 哈尔滨工业大学学报(英文版), 2014-12, Vol.21 (6), p.57-62
issn 1005-9113
language eng
recordid cdi_wanfang_journals_hebgydxxb_e201406011
source Alma/SFX Local Collection
title Image Steganalysis System optimization Based on Boundary Samples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Steganalysis%20System%20optimization%20Based%20on%20Boundary%20Samples&rft.jtitle=%E5%93%88%E5%B0%94%E6%BB%A8%E5%B7%A5%E4%B8%9A%E5%A4%A7%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Li-Na%20Wang%20Min-Jie%20Wang%20Ting-Ting%20Zhu%20Qing%20Dou&rft.date=2014-12-01&rft.volume=21&rft.issue=6&rft.spage=57&rft.epage=62&rft.pages=57-62&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ehebgydxxb_e201406011%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=663564903&rft_wanfj_id=hebgydxxb_e201406011&rfr_iscdi=true