Multi-channel fast super-resolution image reconstruction based on matrix observation model
A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper, which consists of three steps to avoid the computational complexity: a single image SR reconstruction step, a registration step and a wavelet-based image fusion. This algo...
Gespeichert in:
Veröffentlicht in: | Journal of Harbin Institute of Technology 2010-04, Vol.17 (2), p.239-246 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 2 |
container_start_page | 239 |
container_title | Journal of Harbin Institute of Technology |
container_volume | 17 |
creator | 刘洪臣 冯勇 李林静 |
description | A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper, which consists of three steps to avoid the computational complexity: a single image SR reconstruction step, a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore, we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally, the wavelet fusion is used to integrate all the registered high- resolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity, and can be applied to large-dimension low-resolution images. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_hebgydxxb_e201002018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33911226</cqvip_id><wanfj_id>hebgydxxb_e201002018</wanfj_id><sourcerecordid>hebgydxxb_e201002018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1348-a12d3b7a0186bc165a3dad8293321ba828b87045a6f53a7f6b64569c3484be713</originalsourceid><addsrcrecordid>eNotUMlOwzAQzQEkSuEfLM5E8pI4zhFVbFIrLnDhEo2dcZKS2GAnUP4eq-UybzTzFumdZStGaZnXjImL7DLGPaWirqlcZe-7ZZyH3PTgHI7EQpxJXD4x5AGjH5d58I4ME3RIAhrv4hwWczxqiNiStEwwh-FAvI4YvuH4m3yL41V2bmGMeP2P6-zt4f5185RvXx6fN3fb3DBRqBwYb4WugDIltWGyBNFCq3gtBGcaFFdaVbQoQdpSQGWllkUpa5O0hcaKiXV2e_L9AWfBdc3eL8GlxKZH3f22h4NukNPUQBoq0W9OdNN7130NSaDBfNhhxEaIVBHnUvwBIXhdLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-channel fast super-resolution image reconstruction based on matrix observation model</title><source>Alma/SFX Local Collection</source><creator>刘洪臣 冯勇 李林静</creator><creatorcontrib>刘洪臣 冯勇 李林静</creatorcontrib><description>A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper, which consists of three steps to avoid the computational complexity: a single image SR reconstruction step, a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore, we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally, the wavelet fusion is used to integrate all the registered high- resolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity, and can be applied to large-dimension low-resolution images.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><publisher>School of Electrical Engineering and Automation,Harbin Institute of Technology, Harbin 150001,China</publisher><ispartof>Journal of Harbin Institute of Technology, 2010-04, Vol.17 (2), p.239-246</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>刘洪臣 冯勇 李林静</creatorcontrib><title>Multi-channel fast super-resolution image reconstruction based on matrix observation model</title><title>Journal of Harbin Institute of Technology</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper, which consists of three steps to avoid the computational complexity: a single image SR reconstruction step, a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore, we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally, the wavelet fusion is used to integrate all the registered high- resolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity, and can be applied to large-dimension low-resolution images.</description><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotUMlOwzAQzQEkSuEfLM5E8pI4zhFVbFIrLnDhEo2dcZKS2GAnUP4eq-UybzTzFumdZStGaZnXjImL7DLGPaWirqlcZe-7ZZyH3PTgHI7EQpxJXD4x5AGjH5d58I4ME3RIAhrv4hwWczxqiNiStEwwh-FAvI4YvuH4m3yL41V2bmGMeP2P6-zt4f5185RvXx6fN3fb3DBRqBwYb4WugDIltWGyBNFCq3gtBGcaFFdaVbQoQdpSQGWllkUpa5O0hcaKiXV2e_L9AWfBdc3eL8GlxKZH3f22h4NukNPUQBoq0W9OdNN7130NSaDBfNhhxEaIVBHnUvwBIXhdLA</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>刘洪臣 冯勇 李林静</creator><general>School of Electrical Engineering and Automation,Harbin Institute of Technology, Harbin 150001,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201004</creationdate><title>Multi-channel fast super-resolution image reconstruction based on matrix observation model</title><author>刘洪臣 冯勇 李林静</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1348-a12d3b7a0186bc165a3dad8293321ba828b87045a6f53a7f6b64569c3484be713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘洪臣 冯勇 李林静</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Harbin Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘洪臣 冯勇 李林静</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-channel fast super-resolution image reconstruction based on matrix observation model</atitle><jtitle>Journal of Harbin Institute of Technology</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2010-04</date><risdate>2010</risdate><volume>17</volume><issue>2</issue><spage>239</spage><epage>246</epage><pages>239-246</pages><issn>1005-9113</issn><abstract>A multi-channel fast super-resolution image reconstruction algorithm based on matrix observation model is proposed in the paper, which consists of three steps to avoid the computational complexity: a single image SR reconstruction step, a registration step and a wavelet-based image fusion. This algorithm decomposes two large matrixes to the tensor product of two little matrixes and uses the natural isomorphism between matrix space and vector space to transform cost function based on matrix-vector products model to matrix form. Furthermore, we prove that the regularization part can be transformed to the matrix formed. The conjugate-gradient method is used to solve this new model. Finally, the wavelet fusion is used to integrate all the registered high- resolution images obtained from the single image SR reconstruction step. The proposed algorithm reduces the storage requirement and the calculating complexity, and can be applied to large-dimension low-resolution images.</abstract><pub>School of Electrical Engineering and Automation,Harbin Institute of Technology, Harbin 150001,China</pub><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9113 |
ispartof | Journal of Harbin Institute of Technology, 2010-04, Vol.17 (2), p.239-246 |
issn | 1005-9113 |
language | eng |
recordid | cdi_wanfang_journals_hebgydxxb_e201002018 |
source | Alma/SFX Local Collection |
title | Multi-channel fast super-resolution image reconstruction based on matrix observation model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-channel%20fast%20super-resolution%20image%20reconstruction%20based%20on%20matrix%20observation%20model&rft.jtitle=Journal%20of%20Harbin%20Institute%20of%20Technology&rft.au=%E5%88%98%E6%B4%AA%E8%87%A3%20%E5%86%AF%E5%8B%87%20%E6%9D%8E%E6%9E%97%E9%9D%99&rft.date=2010-04&rft.volume=17&rft.issue=2&rft.spage=239&rft.epage=246&rft.pages=239-246&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ehebgydxxb_e201002018%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=33911226&rft_wanfj_id=hebgydxxb_e201002018&rfr_iscdi=true |