Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics

To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Harbin Institute of Technology 2009-10, Vol.16 (5), p.713-716
1. Verfasser: 钱真 李雪耀 张汝波 王武
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 5
container_start_page 713
container_title Journal of Harbin Institute of Technology
container_volume 16
creator 钱真 李雪耀 张汝波 王武
description To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.
format Article
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_hebgydxxb_e200905024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>32405017</cqvip_id><wanfj_id>hebgydxxb_e200905024</wanfj_id><sourcerecordid>hebgydxxb_e200905024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1344-626c740e80fe1b2001cd4ec600c77d05588aded67c28e736c2f54fc05ebd59953</originalsourceid><addsrcrecordid>eNotjctOwzAURLMAiVL4B4s1lm4SO48lqnhJlVgA68i5voldErvEhpa_x6KsZjHnzJxlqxxA8jbPy4vsMoQdQNm2UK0y_7onQsNDXEjNTFMkjNY7Zh0Lxi-RH9Q3MTTKOZpYrwJplmqa93axqCY2e03JQz_vfbB_rnKaGTsaWrhfNC0sRBVtiBbDVXY-qCnQ9X-us_eH-7fNE9--PD5v7rYc81IIXhUV1gKogYHyvgDIUQvCCgDrWoOUTaM06arGoqG6rLAYpBgQJPVatq0s19ntafeg3KDc2O381-LSY2eoH3_08dh3lHZbkFCIhN-ccDTejZ82Cb3Cj8FO1JWFSFBel78hvmUd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics</title><source>Alma/SFX Local Collection</source><creator>钱真 李雪耀 张汝波 王武</creator><creatorcontrib>钱真 李雪耀 张汝波 王武</creatorcontrib><description>To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><publisher>College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China</publisher><subject>信道检测 ; 电解二氧化锰 ; 经验模式分解 ; 语音信号 ; 非高斯噪声 ; 高阶统计</subject><ispartof>Journal of Harbin Institute of Technology, 2009-10, Vol.16 (5), p.713-716</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,777,781</link.rule.ids></links><search><creatorcontrib>钱真 李雪耀 张汝波 王武</creatorcontrib><title>Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics</title><title>Journal of Harbin Institute of Technology</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.</description><subject>信道检测</subject><subject>电解二氧化锰</subject><subject>经验模式分解</subject><subject>语音信号</subject><subject>非高斯噪声</subject><subject>高阶统计</subject><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNotjctOwzAURLMAiVL4B4s1lm4SO48lqnhJlVgA68i5voldErvEhpa_x6KsZjHnzJxlqxxA8jbPy4vsMoQdQNm2UK0y_7onQsNDXEjNTFMkjNY7Zh0Lxi-RH9Q3MTTKOZpYrwJplmqa93axqCY2e03JQz_vfbB_rnKaGTsaWrhfNC0sRBVtiBbDVXY-qCnQ9X-us_eH-7fNE9--PD5v7rYc81IIXhUV1gKogYHyvgDIUQvCCgDrWoOUTaM06arGoqG6rLAYpBgQJPVatq0s19ntafeg3KDc2O381-LSY2eoH3_08dh3lHZbkFCIhN-ccDTejZ82Cb3Cj8FO1JWFSFBel78hvmUd</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>钱真 李雪耀 张汝波 王武</creator><general>College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200910</creationdate><title>Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics</title><author>钱真 李雪耀 张汝波 王武</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1344-626c740e80fe1b2001cd4ec600c77d05588aded67c28e736c2f54fc05ebd59953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>信道检测</topic><topic>电解二氧化锰</topic><topic>经验模式分解</topic><topic>语音信号</topic><topic>非高斯噪声</topic><topic>高阶统计</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>钱真 李雪耀 张汝波 王武</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Harbin Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>钱真 李雪耀 张汝波 王武</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics</atitle><jtitle>Journal of Harbin Institute of Technology</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2009-10</date><risdate>2009</risdate><volume>16</volume><issue>5</issue><spage>713</spage><epage>716</epage><pages>713-716</pages><issn>1005-9113</issn><abstract>To capture the presence of speech embedded in nonspeech events and background noise in shortwave non-cooperative communication, an algorithm for speech-stream detection in noisy environments is presented based on Empirical Mode Decomposition (EMD) and statistical properties of higher-order cumulants of speech signals. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant ( FOC ) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order eumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted by Gaussian noise. With the self-adaptive decomposition by EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNRs, and the algorithm is robust in real signal tests.</abstract><pub>College of Computer Science and Technology,Harbin Engineering University,Harbin 150001,China</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-9113
ispartof Journal of Harbin Institute of Technology, 2009-10, Vol.16 (5), p.713-716
issn 1005-9113
language eng
recordid cdi_wanfang_journals_hebgydxxb_e200905024
source Alma/SFX Local Collection
subjects 信道检测
电解二氧化锰
经验模式分解
语音信号
非高斯噪声
高阶统计
title Speech-stream detection in short-wave channel based on empirical mode decomposition and higher-order statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speech-stream%20detection%20in%20short-wave%20channel%20based%20on%20empirical%20mode%20decomposition%20and%20higher-order%20statistics&rft.jtitle=Journal%20of%20Harbin%20Institute%20of%20Technology&rft.au=%E9%92%B1%E7%9C%9F%20%E6%9D%8E%E9%9B%AA%E8%80%80%20%E5%BC%A0%E6%B1%9D%E6%B3%A2%20%E7%8E%8B%E6%AD%A6&rft.date=2009-10&rft.volume=16&rft.issue=5&rft.spage=713&rft.epage=716&rft.pages=713-716&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ehebgydxxb_e200905024%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=32405017&rft_wanfj_id=hebgydxxb_e200905024&rfr_iscdi=true