The feature on the posterior conditional probability of finite state Markov channel
The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel in...
Gespeichert in:
Veröffentlicht in: | Journal of Harbin Institute of Technology 2005-08, Vol.12 (4), p.446-449 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 449 |
---|---|
container_issue | 4 |
container_start_page | 446 |
container_title | Journal of Harbin Institute of Technology |
container_volume | 12 |
creator | 母丽华 沈继红 苑延华 |
description | The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hebgydxxb_e200504019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20391705</cqvip_id><wanfj_id>hebgydxxb_e200504019</wanfj_id><sourcerecordid>hebgydxxb_e200504019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1659-1728b99e07cb575d9d3a3ac497c73af9d20e762e89c0ebc3bdf75856042d02733</originalsourceid><addsrcrecordid>eNotkEtLAzEUhWehYK3-h-DClQN5TCbNUoovqLiwroc8bjppx6SdZLT99wbq5lwOfBzuORfVjGDMa0kIu6quU9pizKTE7az6XPeAHKg8jYBiQLnYfUwZRh9HZGKwPvsY1ID2Y9RK-8HnE4oOOR98BpSyKvquxl38QaZXIcBwU106NSS4_b_z6uv5ab18rVcfL2_Lx1VtSMtlTQRdaCkBC6O54FZappgyjRRGMOWkpRhES2EhDQZtmLZO8AVvcUMtpoKxefVwzv1Vwamw6bZxGsurqetBb072eNQd0FIcN5jIgt-f8dLkMEHK3bdPBoZBBYhT6qgkksuGFvDuDJo-hs3Bl2StzM75ATpahiMCc_YHYhVnqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29195942</pqid></control><display><type>article</type><title>The feature on the posterior conditional probability of finite state Markov channel</title><source>Alma/SFX Local Collection</source><creator>母丽华 沈继红 苑延华</creator><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><description>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><publisher>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</publisher><subject>Markov过程 ; Markov链 ; 有限状态 ; 概率分布</subject><ispartof>Journal of Harbin Institute of Technology, 2005-08, Vol.12 (4), p.446-449</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><title>The feature on the posterior conditional probability of finite state Markov channel</title><title>Journal of Harbin Institute of Technology</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</description><subject>Markov过程</subject><subject>Markov链</subject><subject>有限状态</subject><subject>概率分布</subject><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhWehYK3-h-DClQN5TCbNUoovqLiwroc8bjppx6SdZLT99wbq5lwOfBzuORfVjGDMa0kIu6quU9pizKTE7az6XPeAHKg8jYBiQLnYfUwZRh9HZGKwPvsY1ID2Y9RK-8HnE4oOOR98BpSyKvquxl38QaZXIcBwU106NSS4_b_z6uv5ab18rVcfL2_Lx1VtSMtlTQRdaCkBC6O54FZappgyjRRGMOWkpRhES2EhDQZtmLZO8AVvcUMtpoKxefVwzv1Vwamw6bZxGsurqetBb072eNQd0FIcN5jIgt-f8dLkMEHK3bdPBoZBBYhT6qgkksuGFvDuDJo-hs3Bl2StzM75ATpahiMCc_YHYhVnqA</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>母丽华 沈继红 苑延华</creator><general>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200508</creationdate><title>The feature on the posterior conditional probability of finite state Markov channel</title><author>母丽华 沈继红 苑延华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1659-1728b99e07cb575d9d3a3ac497c73af9d20e762e89c0ebc3bdf75856042d02733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Markov过程</topic><topic>Markov链</topic><topic>有限状态</topic><topic>概率分布</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Harbin Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>母丽华 沈继红 苑延华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The feature on the posterior conditional probability of finite state Markov channel</atitle><jtitle>Journal of Harbin Institute of Technology</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2005-08</date><risdate>2005</risdate><volume>12</volume><issue>4</issue><spage>446</spage><epage>449</epage><pages>446-449</pages><issn>1005-9113</issn><abstract>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</abstract><pub>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-9113 |
ispartof | Journal of Harbin Institute of Technology, 2005-08, Vol.12 (4), p.446-449 |
issn | 1005-9113 |
language | eng |
recordid | cdi_wanfang_journals_hebgydxxb_e200504019 |
source | Alma/SFX Local Collection |
subjects | Markov过程 Markov链 有限状态 概率分布 |
title | The feature on the posterior conditional probability of finite state Markov channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20feature%20on%20the%20posterior%20conditional%20probability%20of%20finite%20state%20Markov%20channel&rft.jtitle=Journal%20of%20Harbin%20Institute%20of%20Technology&rft.au=%E6%AF%8D%E4%B8%BD%E5%8D%8E%20%E6%B2%88%E7%BB%A7%E7%BA%A2%20%E8%8B%91%E5%BB%B6%E5%8D%8E&rft.date=2005-08&rft.volume=12&rft.issue=4&rft.spage=446&rft.epage=449&rft.pages=446-449&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Ehebgydxxb_e200504019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29195942&rft_id=info:pmid/&rft_cqvip_id=20391705&rft_wanfj_id=hebgydxxb_e200504019&rfr_iscdi=true |