The feature on the posterior conditional probability of finite state Markov channel

The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Harbin Institute of Technology 2005-08, Vol.12 (4), p.446-449
1. Verfasser: 母丽华 沈继红 苑延华
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 449
container_issue 4
container_start_page 446
container_title Journal of Harbin Institute of Technology
container_volume 12
creator 母丽华 沈继红 苑延华
description The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hebgydxxb_e200504019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20391705</cqvip_id><wanfj_id>hebgydxxb_e200504019</wanfj_id><sourcerecordid>hebgydxxb_e200504019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1659-1728b99e07cb575d9d3a3ac497c73af9d20e762e89c0ebc3bdf75856042d02733</originalsourceid><addsrcrecordid>eNotkEtLAzEUhWehYK3-h-DClQN5TCbNUoovqLiwroc8bjppx6SdZLT99wbq5lwOfBzuORfVjGDMa0kIu6quU9pizKTE7az6XPeAHKg8jYBiQLnYfUwZRh9HZGKwPvsY1ID2Y9RK-8HnE4oOOR98BpSyKvquxl38QaZXIcBwU106NSS4_b_z6uv5ab18rVcfL2_Lx1VtSMtlTQRdaCkBC6O54FZappgyjRRGMOWkpRhES2EhDQZtmLZO8AVvcUMtpoKxefVwzv1Vwamw6bZxGsurqetBb072eNQd0FIcN5jIgt-f8dLkMEHK3bdPBoZBBYhT6qgkksuGFvDuDJo-hs3Bl2StzM75ATpahiMCc_YHYhVnqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29195942</pqid></control><display><type>article</type><title>The feature on the posterior conditional probability of finite state Markov channel</title><source>Alma/SFX Local Collection</source><creator>母丽华 沈继红 苑延华</creator><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><description>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</description><identifier>ISSN: 1005-9113</identifier><language>eng</language><publisher>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</publisher><subject>Markov过程 ; Markov链 ; 有限状态 ; 概率分布</subject><ispartof>Journal of Harbin Institute of Technology, 2005-08, Vol.12 (4), p.446-449</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86045X/86045X.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><title>The feature on the posterior conditional probability of finite state Markov channel</title><title>Journal of Harbin Institute of Technology</title><addtitle>Journal of Harbin Institute of Technology</addtitle><description>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</description><subject>Markov过程</subject><subject>Markov链</subject><subject>有限状态</subject><subject>概率分布</subject><issn>1005-9113</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhWehYK3-h-DClQN5TCbNUoovqLiwroc8bjppx6SdZLT99wbq5lwOfBzuORfVjGDMa0kIu6quU9pizKTE7az6XPeAHKg8jYBiQLnYfUwZRh9HZGKwPvsY1ID2Y9RK-8HnE4oOOR98BpSyKvquxl38QaZXIcBwU106NSS4_b_z6uv5ab18rVcfL2_Lx1VtSMtlTQRdaCkBC6O54FZappgyjRRGMOWkpRhES2EhDQZtmLZO8AVvcUMtpoKxefVwzv1Vwamw6bZxGsurqetBb072eNQd0FIcN5jIgt-f8dLkMEHK3bdPBoZBBYhT6qgkksuGFvDuDJo-hs3Bl2StzM75ATpahiMCc_YHYhVnqA</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>母丽华 沈继红 苑延华</creator><general>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200508</creationdate><title>The feature on the posterior conditional probability of finite state Markov channel</title><author>母丽华 沈继红 苑延华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1659-1728b99e07cb575d9d3a3ac497c73af9d20e762e89c0ebc3bdf75856042d02733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Markov过程</topic><topic>Markov链</topic><topic>有限状态</topic><topic>概率分布</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>母丽华 沈继红 苑延华</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of Harbin Institute of Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>母丽华 沈继红 苑延华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The feature on the posterior conditional probability of finite state Markov channel</atitle><jtitle>Journal of Harbin Institute of Technology</jtitle><addtitle>Journal of Harbin Institute of Technology</addtitle><date>2005-08</date><risdate>2005</risdate><volume>12</volume><issue>4</issue><spage>446</spage><epage>449</epage><pages>446-449</pages><issn>1005-9113</issn><abstract>The feature of finite state Markov channel probability distribution is discussed on condition that original I/O are known. The probability is called posterior condition probability. It is also proved by Bayes formula that posterior condition probability forms stationary Markov sequence if channel input is independently and identically distributed. On the contrary, Markov property of posterior condition probability isn' t kept if the input isn't independently and identically distributed and a numerical example is utilized to explain this case. The properties of posterior condition probability will aid the study of the numerical calculated recurrence formula of finite state Markov channel capacity.</abstract><pub>Dept. of Mathematics and Mechanics, Heilongjiang Institute of Science and Technology, Harbin 150027, China%Harbin Engineering University 150001, China</pub><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-9113
ispartof Journal of Harbin Institute of Technology, 2005-08, Vol.12 (4), p.446-449
issn 1005-9113
language eng
recordid cdi_wanfang_journals_hebgydxxb_e200504019
source Alma/SFX Local Collection
subjects Markov过程
Markov链
有限状态
概率分布
title The feature on the posterior conditional probability of finite state Markov channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20feature%20on%20the%20posterior%20conditional%20probability%20of%20finite%20state%20Markov%20channel&rft.jtitle=Journal%20of%20Harbin%20Institute%20of%20Technology&rft.au=%E6%AF%8D%E4%B8%BD%E5%8D%8E%20%E6%B2%88%E7%BB%A7%E7%BA%A2%20%E8%8B%91%E5%BB%B6%E5%8D%8E&rft.date=2005-08&rft.volume=12&rft.issue=4&rft.spage=446&rft.epage=449&rft.pages=446-449&rft.issn=1005-9113&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_proqu%3Ehebgydxxb_e200504019%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29195942&rft_id=info:pmid/&rft_cqvip_id=20391705&rft_wanfj_id=hebgydxxb_e200504019&rfr_iscdi=true