Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results
The study aims to calibrate parameters of two-phase fatigue prediction model based on the results of the small-scale fatigue test experiments for zero stress ratio and without residual stresses, and then to investigate their applicability for different stress ratios and in the presence of residual s...
Gespeichert in:
Veröffentlicht in: | Journal of marine science and application 2022-12, Vol.21 (4), p.95-103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | 4 |
container_start_page | 95 |
container_title | Journal of marine science and application |
container_volume | 21 |
creator | Gledić, Ivana Mikulić, Antonio Parunov, Joško |
description | The study aims to calibrate parameters of two-phase fatigue prediction model based on the results of the small-scale fatigue test experiments for zero stress ratio and without residual stresses, and then to investigate their applicability for different stress ratios and in the presence of residual stresses. Total fatigue life using the two-phase model consists of crack initiation phase, calculated by strain-life approach, and crack propagation phase, calculated by fracture mechanic’s approach. Calibration of the fatigue parameters is performed for each phase by fitting numerical to the experimental results. Comparative analysis of calculated and measured fatigue lives is then conducted for different stress ratios, in both stress-relieved and as-welded conditions. Given that calculation parameters are calibrated for the basic case, uncertainty of predictions is large, showing that application of the method for real-life complex marine structures is challenging. |
doi_str_mv | 10.1007/s11804-022-00304-8 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hebgcdxxb_e202204007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hebgcdxxb_e202204007</wanfj_id><sourcerecordid>hebgcdxxb_e202204007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-59aca49877047ed884b9c500c8460d0567b54cd80b604dffb595bb8353aeff23</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhosoOKcv4FXAW6OnTdKmlzo2FQYON_AypMnJ1tG1s-nYfHszK-zOqxzC9_-H80XRbQwPMUD26ONYAqeQJBSAhUmeRYM4zxkVwOV5mNMspjln7DK68n4NkGYpY4PILPYNna20RzLRXbncIZmWDsmsRVuarmxq0jgy3-iqonOjKySfWFm0ZL5FU26w9uQ5hC0JYLdCMj5ssT3-d7oiH-h3VeevowunK483f-8wWkzGi9Ernb6_vI2eptQkMu2oyLXRPJdZBjxDKyUvciMAjOQpWBBpVghurIQiBW6dK0QuikIywTQ6l7BhdN_X7nXtdL1U62bX1mGhWmGxNPZwKBQmQRHwoCzgdz2-bZuvHfruxCdZKnjwI3igkp4ybeN9i05tw3m6_VYxqKN61atXoVf9qlcyhFgf8gGul9ieqv9J_QByDIXR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2765476354</pqid></control><display><type>article</type><title>Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Gledić, Ivana ; Mikulić, Antonio ; Parunov, Joško</creator><creatorcontrib>Gledić, Ivana ; Mikulić, Antonio ; Parunov, Joško</creatorcontrib><description>The study aims to calibrate parameters of two-phase fatigue prediction model based on the results of the small-scale fatigue test experiments for zero stress ratio and without residual stresses, and then to investigate their applicability for different stress ratios and in the presence of residual stresses. Total fatigue life using the two-phase model consists of crack initiation phase, calculated by strain-life approach, and crack propagation phase, calculated by fracture mechanic’s approach. Calibration of the fatigue parameters is performed for each phase by fitting numerical to the experimental results. Comparative analysis of calculated and measured fatigue lives is then conducted for different stress ratios, in both stress-relieved and as-welded conditions. Given that calculation parameters are calibrated for the basic case, uncertainty of predictions is large, showing that application of the method for real-life complex marine structures is challenging.</description><identifier>ISSN: 1671-9433</identifier><identifier>EISSN: 1993-5048</identifier><identifier>DOI: 10.1007/s11804-022-00304-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calibration ; Comparative analysis ; Crack initiation ; Crack propagation ; Electrical Machines and Networks ; Engineering ; Fatigue life ; Fatigue tests ; Geotechnical Engineering & Applied Earth Sciences ; Life prediction ; Machinery and Machine Elements ; Mathematical models ; Offshore Engineering ; Offshore structures ; Parameters ; Power Electronics ; Prediction models ; Ratios ; Research Article ; Residual stress ; Strain ; Stress ratio ; Welding ; Welding parameters</subject><ispartof>Journal of marine science and application, 2022-12, Vol.21 (4), p.95-103</ispartof><rights>Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Harbin Engineering University and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-59aca49877047ed884b9c500c8460d0567b54cd80b604dffb595bb8353aeff23</citedby><cites>FETCH-LOGICAL-c286t-59aca49877047ed884b9c500c8460d0567b54cd80b604dffb595bb8353aeff23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hebgcdxxb-e/hebgcdxxb-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11804-022-00304-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11804-022-00304-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gledić, Ivana</creatorcontrib><creatorcontrib>Mikulić, Antonio</creatorcontrib><creatorcontrib>Parunov, Joško</creatorcontrib><title>Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results</title><title>Journal of marine science and application</title><addtitle>J. Marine. Sci. Appl</addtitle><description>The study aims to calibrate parameters of two-phase fatigue prediction model based on the results of the small-scale fatigue test experiments for zero stress ratio and without residual stresses, and then to investigate their applicability for different stress ratios and in the presence of residual stresses. Total fatigue life using the two-phase model consists of crack initiation phase, calculated by strain-life approach, and crack propagation phase, calculated by fracture mechanic’s approach. Calibration of the fatigue parameters is performed for each phase by fitting numerical to the experimental results. Comparative analysis of calculated and measured fatigue lives is then conducted for different stress ratios, in both stress-relieved and as-welded conditions. Given that calculation parameters are calibrated for the basic case, uncertainty of predictions is large, showing that application of the method for real-life complex marine structures is challenging.</description><subject>Calibration</subject><subject>Comparative analysis</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Electrical Machines and Networks</subject><subject>Engineering</subject><subject>Fatigue life</subject><subject>Fatigue tests</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Life prediction</subject><subject>Machinery and Machine Elements</subject><subject>Mathematical models</subject><subject>Offshore Engineering</subject><subject>Offshore structures</subject><subject>Parameters</subject><subject>Power Electronics</subject><subject>Prediction models</subject><subject>Ratios</subject><subject>Research Article</subject><subject>Residual stress</subject><subject>Strain</subject><subject>Stress ratio</subject><subject>Welding</subject><subject>Welding parameters</subject><issn>1671-9433</issn><issn>1993-5048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kNFKwzAUhosoOKcv4FXAW6OnTdKmlzo2FQYON_AypMnJ1tG1s-nYfHszK-zOqxzC9_-H80XRbQwPMUD26ONYAqeQJBSAhUmeRYM4zxkVwOV5mNMspjln7DK68n4NkGYpY4PILPYNna20RzLRXbncIZmWDsmsRVuarmxq0jgy3-iqonOjKySfWFm0ZL5FU26w9uQ5hC0JYLdCMj5ssT3-d7oiH-h3VeevowunK483f-8wWkzGi9Ernb6_vI2eptQkMu2oyLXRPJdZBjxDKyUvciMAjOQpWBBpVghurIQiBW6dK0QuikIywTQ6l7BhdN_X7nXtdL1U62bX1mGhWmGxNPZwKBQmQRHwoCzgdz2-bZuvHfruxCdZKnjwI3igkp4ybeN9i05tw3m6_VYxqKN61atXoVf9qlcyhFgf8gGul9ieqv9J_QByDIXR</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Gledić, Ivana</creator><creator>Mikulić, Antonio</creator><creator>Parunov, Joško</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Faculty of Mechanical Engineering and Naval Architecture,University of Zagreb,Zagreb 10000,Croatia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>H97</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20221201</creationdate><title>Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results</title><author>Gledić, Ivana ; Mikulić, Antonio ; Parunov, Joško</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-59aca49877047ed884b9c500c8460d0567b54cd80b604dffb595bb8353aeff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calibration</topic><topic>Comparative analysis</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Electrical Machines and Networks</topic><topic>Engineering</topic><topic>Fatigue life</topic><topic>Fatigue tests</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Life prediction</topic><topic>Machinery and Machine Elements</topic><topic>Mathematical models</topic><topic>Offshore Engineering</topic><topic>Offshore structures</topic><topic>Parameters</topic><topic>Power Electronics</topic><topic>Prediction models</topic><topic>Ratios</topic><topic>Research Article</topic><topic>Residual stress</topic><topic>Strain</topic><topic>Stress ratio</topic><topic>Welding</topic><topic>Welding parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gledić, Ivana</creatorcontrib><creatorcontrib>Mikulić, Antonio</creatorcontrib><creatorcontrib>Parunov, Joško</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of marine science and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gledić, Ivana</au><au>Mikulić, Antonio</au><au>Parunov, Joško</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results</atitle><jtitle>Journal of marine science and application</jtitle><stitle>J. Marine. Sci. Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>21</volume><issue>4</issue><spage>95</spage><epage>103</epage><pages>95-103</pages><issn>1671-9433</issn><eissn>1993-5048</eissn><abstract>The study aims to calibrate parameters of two-phase fatigue prediction model based on the results of the small-scale fatigue test experiments for zero stress ratio and without residual stresses, and then to investigate their applicability for different stress ratios and in the presence of residual stresses. Total fatigue life using the two-phase model consists of crack initiation phase, calculated by strain-life approach, and crack propagation phase, calculated by fracture mechanic’s approach. Calibration of the fatigue parameters is performed for each phase by fitting numerical to the experimental results. Comparative analysis of calculated and measured fatigue lives is then conducted for different stress ratios, in both stress-relieved and as-welded conditions. Given that calculation parameters are calibrated for the basic case, uncertainty of predictions is large, showing that application of the method for real-life complex marine structures is challenging.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11804-022-00304-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-9433 |
ispartof | Journal of marine science and application, 2022-12, Vol.21 (4), p.95-103 |
issn | 1671-9433 1993-5048 |
language | eng |
recordid | cdi_wanfang_journals_hebgcdxxb_e202204007 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Calibration Comparative analysis Crack initiation Crack propagation Electrical Machines and Networks Engineering Fatigue life Fatigue tests Geotechnical Engineering & Applied Earth Sciences Life prediction Machinery and Machine Elements Mathematical models Offshore Engineering Offshore structures Parameters Power Electronics Prediction models Ratios Research Article Residual stress Strain Stress ratio Welding Welding parameters |
title | Two-Phase Fatigue Life Prediction of Small-Scale Welded Specimens Based on the Experimental Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Phase%20Fatigue%20Life%20Prediction%20of%20Small-Scale%20Welded%20Specimens%20Based%20on%20the%20Experimental%20Results&rft.jtitle=Journal%20of%20marine%20science%20and%20application&rft.au=Gledi%C4%87,%20Ivana&rft.date=2022-12-01&rft.volume=21&rft.issue=4&rft.spage=95&rft.epage=103&rft.pages=95-103&rft.issn=1671-9433&rft.eissn=1993-5048&rft_id=info:doi/10.1007/s11804-022-00304-8&rft_dat=%3Cwanfang_jour_proqu%3Ehebgcdxxb_e202204007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2765476354&rft_id=info:pmid/&rft_wanfj_id=hebgcdxxb_e202204007&rfr_iscdi=true |