船舶动力系统中齿轮箱故障特征提取与模式识别方法研究
U6; A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative...
Gespeichert in:
Veröffentlicht in: | 船舶与海洋工程学报(英文版) 2011, Vol.10 (1), p.17-24 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | 船舶与海洋工程学报(英文版) |
container_volume | 10 |
creator | 李志雄 严新平 袁成清 赵江滨 彭中笑 |
description | U6; A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neur |
doi_str_mv | 10.1007/s11804-011-1036-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_hebgcdxxb_e201101003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hebgcdxxb_e201101003</wanfj_id><sourcerecordid>hebgcdxxb_e201101003</sourcerecordid><originalsourceid>FETCH-wanfang_journals_hebgcdxxb_e2011010033</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDAw1y82NLQwMNE1MDTUNTQwNtM1Z2HgNDQzN9S1NDE25mDgLS7OTDIwMjI2NLU0MuNk8H7RsfNFx7anXSueds1-vnn3893zn-xY-3Lv_hd71z1ft_HZ1NaXs-Y879z5dF_js_4JT_unPdnR92zFwqd7-l-sb3vasfrZtJ3PNk99vmDK85XbeBhY0xJzilN5oTQ3g46ba4izh255Yl5aYl56fFZ-aVEeUCY-IzUpPTmloiIpPtUI6FIDoMuNjUlUDgDup2Pm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>船舶动力系统中齿轮箱故障特征提取与模式识别方法研究</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>李志雄 ; 严新平 ; 袁成清 ; 赵江滨 ; 彭中笑</creator><creatorcontrib>李志雄 ; 严新平 ; 袁成清 ; 赵江滨 ; 彭中笑</creatorcontrib><description>U6; A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neur</description><identifier>ISSN: 1671-9433</identifier><identifier>DOI: 10.1007/s11804-011-1036-7</identifier><language>chi</language><publisher>Key Lab. of Marine Power Eng. and Tech.(Ministry of Transport), Wuhan University of Technology, Wuhan 430063, China%School of Engineering and Physical Sciences, James Cook University, Townsville, Qld 4811, Australia</publisher><ispartof>船舶与海洋工程学报(英文版), 2011, Vol.10 (1), p.17-24</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hebgcdxxb-e/hebgcdxxb-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>李志雄</creatorcontrib><creatorcontrib>严新平</creatorcontrib><creatorcontrib>袁成清</creatorcontrib><creatorcontrib>赵江滨</creatorcontrib><creatorcontrib>彭中笑</creatorcontrib><title>船舶动力系统中齿轮箱故障特征提取与模式识别方法研究</title><title>船舶与海洋工程学报(英文版)</title><description>U6; A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neur</description><issn>1671-9433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpjYJA0NNAzNDAw1y82NLQwMNE1MDTUNTQwNtM1Z2HgNDQzN9S1NDE25mDgLS7OTDIwMjI2NLU0MuNk8H7RsfNFx7anXSueds1-vnn3893zn-xY-3Lv_hd71z1ft_HZ1NaXs-Y879z5dF_js_4JT_unPdnR92zFwqd7-l-sb3vasfrZtJ3PNk99vmDK85XbeBhY0xJzilN5oTQ3g46ba4izh255Yl5aYl56fFZ-aVEeUCY-IzUpPTmloiIpPtUI6FIDoMuNjUlUDgDup2Pm</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>李志雄</creator><creator>严新平</creator><creator>袁成清</creator><creator>赵江滨</creator><creator>彭中笑</creator><general>Key Lab. of Marine Power Eng. and Tech.(Ministry of Transport), Wuhan University of Technology, Wuhan 430063, China%School of Engineering and Physical Sciences, James Cook University, Townsville, Qld 4811, Australia</general><general>Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>船舶动力系统中齿轮箱故障特征提取与模式识别方法研究</title><author>李志雄 ; 严新平 ; 袁成清 ; 赵江滨 ; 彭中笑</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_hebgcdxxb_e2011010033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>李志雄</creatorcontrib><creatorcontrib>严新平</creatorcontrib><creatorcontrib>袁成清</creatorcontrib><creatorcontrib>赵江滨</creatorcontrib><creatorcontrib>彭中笑</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>船舶与海洋工程学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>李志雄</au><au>严新平</au><au>袁成清</au><au>赵江滨</au><au>彭中笑</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>船舶动力系统中齿轮箱故障特征提取与模式识别方法研究</atitle><jtitle>船舶与海洋工程学报(英文版)</jtitle><date>2011</date><risdate>2011</risdate><volume>10</volume><issue>1</issue><spage>17</spage><epage>24</epage><pages>17-24</pages><issn>1671-9433</issn><abstract>U6; A marine propulsion system is a very complicated system composed of many mechanical components. As a result, the vibration signal of a gearbox in the system is strongly coupled with the vibration signatures of other components including a diesel engine and main shaft. It is therefore imperative to assess the coupling effect on diagnostic reliability in the process of gear fault diagnosis. For this reason, a fault detection and diagnosis method based on bispectrum analysis and artificial neural networks (ANNs) was proposed for the gearbox with consideration given to the impact of the other components in marine propulsion systems. To monitor the gear conditions, the bispectrum analysis was first employed to detect gear faults. The amplitude-frequency plots containing gear characteristic signals were then attained based on the bispectrum technique, which could be regarded as an index actualizing forepart gear faults diagnosis. Both the back propagation neural network (BPNN) and the radial-basis function neur</abstract><pub>Key Lab. of Marine Power Eng. and Tech.(Ministry of Transport), Wuhan University of Technology, Wuhan 430063, China%School of Engineering and Physical Sciences, James Cook University, Townsville, Qld 4811, Australia</pub><doi>10.1007/s11804-011-1036-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-9433 |
ispartof | 船舶与海洋工程学报(英文版), 2011, Vol.10 (1), p.17-24 |
issn | 1671-9433 |
language | chi |
recordid | cdi_wanfang_journals_hebgcdxxb_e201101003 |
source | SpringerNature Journals; Alma/SFX Local Collection |
title | 船舶动力系统中齿轮箱故障特征提取与模式识别方法研究 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E8%88%B9%E8%88%B6%E5%8A%A8%E5%8A%9B%E7%B3%BB%E7%BB%9F%E4%B8%AD%E9%BD%BF%E8%BD%AE%E7%AE%B1%E6%95%85%E9%9A%9C%E7%89%B9%E5%BE%81%E6%8F%90%E5%8F%96%E4%B8%8E%E6%A8%A1%E5%BC%8F%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95%E7%A0%94%E7%A9%B6&rft.jtitle=%E8%88%B9%E8%88%B6%E4%B8%8E%E6%B5%B7%E6%B4%8B%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5(%E8%8B%B1%E6%96%87%E7%89%88)&rft.au=%E6%9D%8E%E5%BF%97%E9%9B%84&rft.date=2011&rft.volume=10&rft.issue=1&rft.spage=17&rft.epage=24&rft.pages=17-24&rft.issn=1671-9433&rft_id=info:doi/10.1007/s11804-011-1036-7&rft_dat=%3Cwanfang_jour%3Ehebgcdxxb_e201101003%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hebgcdxxb_e201101003&rfr_iscdi=true |