一类差分系统周期解的存在性
O1; This paper studies the nonautonomous nonlinear system of difference equations △x(n) = A(n)x(n) + f(n, x(n)), n ∈ Z, (*)where x(n) ∈ RN,A(n) = (aij(n))N×N is an N × N matrix, with aij∈ C(R,R) for i,j =ω, z) = f(t, z) for any t ∈ R, (t, z) ∈ R × RN and ω is a positive integer. Sufficient condition...
Gespeichert in:
Veröffentlicht in: | 高校应用数学学报B辑 2006, Vol.21 (3), p.320-326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 3 |
container_start_page | 320 |
container_title | 高校应用数学学报B辑 |
container_volume | 21 |
creator | 魏耿平 申建华 |
description | O1; This paper studies the nonautonomous nonlinear system of difference equations △x(n) = A(n)x(n) + f(n, x(n)), n ∈ Z, (*)where x(n) ∈ RN,A(n) = (aij(n))N×N is an N × N matrix, with aij∈ C(R,R) for i,j =ω, z) = f(t, z) for any t ∈ R, (t, z) ∈ R × RN and ω is a positive integer. Sufficient conditions for the existence of ω-periodic solutions to equations (*) are obtained. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_gxyysxxb_e200603008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>gxyysxxb_e200603008</wanfj_id><sourcerecordid>gxyysxxb_e200603008</sourcerecordid><originalsourceid>FETCH-wanfang_journals_gxyysxxb_e2006030083</originalsourceid><addsrcrecordid>eNpjYeA0NDAw1TU0MDbkYOAtLs5MMjAwN7M0NrQ05WRQf7Kj4fnG3U-3r3va0fZ88-7nu-c_nbji2Zz5L5Yvfj6r5enaGU_nrHjWsJyHgTUtMac4lRdKczNou7mGOHvolifmpSXmpcdn5ZcW5QFl4tMrKiuLKyqS4lONDAzMDIwNDCyMSVMNAMU8RDs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>一类差分系统周期解的存在性</title><source>Alma/SFX Local Collection</source><creator>魏耿平 ; 申建华</creator><creatorcontrib>魏耿平 ; 申建华</creatorcontrib><description>O1; This paper studies the nonautonomous nonlinear system of difference equations △x(n) = A(n)x(n) + f(n, x(n)), n ∈ Z, (*)where x(n) ∈ RN,A(n) = (aij(n))N×N is an N × N matrix, with aij∈ C(R,R) for i,j =ω, z) = f(t, z) for any t ∈ R, (t, z) ∈ R × RN and ω is a positive integer. Sufficient conditions for the existence of ω-periodic solutions to equations (*) are obtained.</description><identifier>ISSN: 1005-1031</identifier><language>chi</language><publisher>怀化学院</publisher><ispartof>高校应用数学学报B辑, 2006, Vol.21 (3), p.320-326</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/gxyysxxb-e/gxyysxxb-e.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>魏耿平</creatorcontrib><creatorcontrib>申建华</creatorcontrib><title>一类差分系统周期解的存在性</title><title>高校应用数学学报B辑</title><description>O1; This paper studies the nonautonomous nonlinear system of difference equations △x(n) = A(n)x(n) + f(n, x(n)), n ∈ Z, (*)where x(n) ∈ RN,A(n) = (aij(n))N×N is an N × N matrix, with aij∈ C(R,R) for i,j =ω, z) = f(t, z) for any t ∈ R, (t, z) ∈ R × RN and ω is a positive integer. Sufficient conditions for the existence of ω-periodic solutions to equations (*) are obtained.</description><issn>1005-1031</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpjYeA0NDAw1TU0MDbkYOAtLs5MMjAwN7M0NrQ05WRQf7Kj4fnG3U-3r3va0fZ88-7nu-c_nbji2Zz5L5Yvfj6r5enaGU_nrHjWsJyHgTUtMac4lRdKczNou7mGOHvolifmpSXmpcdn5ZcW5QFl4tMrKiuLKyqS4lONDAzMDIwNDCyMSVMNAMU8RDs</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>魏耿平</creator><creator>申建华</creator><general>怀化学院</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2006</creationdate><title>一类差分系统周期解的存在性</title><author>魏耿平 ; 申建华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_gxyysxxb_e2006030083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>魏耿平</creatorcontrib><creatorcontrib>申建华</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>高校应用数学学报B辑</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>魏耿平</au><au>申建华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>一类差分系统周期解的存在性</atitle><jtitle>高校应用数学学报B辑</jtitle><date>2006</date><risdate>2006</risdate><volume>21</volume><issue>3</issue><spage>320</spage><epage>326</epage><pages>320-326</pages><issn>1005-1031</issn><abstract>O1; This paper studies the nonautonomous nonlinear system of difference equations △x(n) = A(n)x(n) + f(n, x(n)), n ∈ Z, (*)where x(n) ∈ RN,A(n) = (aij(n))N×N is an N × N matrix, with aij∈ C(R,R) for i,j =ω, z) = f(t, z) for any t ∈ R, (t, z) ∈ R × RN and ω is a positive integer. Sufficient conditions for the existence of ω-periodic solutions to equations (*) are obtained.</abstract><pub>怀化学院</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1031 |
ispartof | 高校应用数学学报B辑, 2006, Vol.21 (3), p.320-326 |
issn | 1005-1031 |
language | chi |
recordid | cdi_wanfang_journals_gxyysxxb_e200603008 |
source | Alma/SFX Local Collection |
title | 一类差分系统周期解的存在性 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E4%B8%80%E7%B1%BB%E5%B7%AE%E5%88%86%E7%B3%BB%E7%BB%9F%E5%91%A8%E6%9C%9F%E8%A7%A3%E7%9A%84%E5%AD%98%E5%9C%A8%E6%80%A7&rft.jtitle=%E9%AB%98%E6%A0%A1%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5B%E8%BE%91&rft.au=%E9%AD%8F%E8%80%BF%E5%B9%B3&rft.date=2006&rft.volume=21&rft.issue=3&rft.spage=320&rft.epage=326&rft.pages=320-326&rft.issn=1005-1031&rft_id=info:doi/&rft_dat=%3Cwanfang_jour%3Egxyysxxb_e200603008%3C/wanfang_jour%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=gxyysxxb_e200603008&rfr_iscdi=true |