CONSERVATION LAWS IN FINITE MICROCRACKING BRITTLE SOLIDS

This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect Boundary Element Method, a versatile method for solving multi-crack interacting pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mechanica solida Sinica 2005-09, Vol.18 (3), p.189-199
1. Verfasser: Wang Defa Chen Yiheng Fukui Takuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the conservation laws in finite brittle solids with microcracks. The discussion is limited to the 2-D cases. First, after considering the combination of the Pseudo-Traction Method and the indirect Boundary Element Method, a versatile method for solving multi-crack interacting problems in finite plane solids is proposed, by which the fracture parameters (SIF and path-independent integrals) can be calculated with a desirable accuracy. Second, with the aid of the method proposed, the roles the conservation laws play in the fracture analysis for finite microcracking solids are studied. It is concluded that the conservation laws do play important roles in not only the fracture analysis but also the analysis of damage and stability for the finite microcracking system. Finally, the physical interpretation of the M-integral is discussed further. An explicit relation between the M-integral and the crack face area, i.e., M = GS, has been discovered using the analytical method, which can shed some light on the Damage Mechanics issues from a different perspective.
ISSN:0894-9166
1860-2134
DOI:10.1007/s10338-005-0524-1