PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES
In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a...
Gespeichert in:
Veröffentlicht in: | 高等学校计算数学学报(英文版) 2005, Vol.14 (1), p.14-30 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | 高等学校计算数学学报(英文版) |
container_volume | 14 |
creator | 何炳生 蒋建林 钱迈建 许娅 |
description | In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions. |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_gdxxjssxxb_e200501002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>15394822</cqvip_id><wanfj_id>gdxxjssxxb_e200501002</wanfj_id><sourcerecordid>gdxxjssxxb_e200501002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c652-636475a499323cd804c7736dba8a7c256c88acd9d2f9b27084a22c8ac3c96b03</originalsourceid><addsrcrecordid>eNotT1tPgzAYbYwmzul_aHxvUlro5bFC55owioC-klJgDhcWJUZ-_tD5dE6-c_lyrsCKYC4Rp1Rcg1WAcYiE5PIW3E3TgDFlMuArsMtzBZ9UqROYFzoxcWVshmJbFPqPwp2utjYp4cYWcGczW9lMwzdVGPUrqxSaTL-8qtRURpf34KZ3x6l7-Mc1KDe6ircotc8mVinyLCKIURbyyIVSUkJ9K3DoOaesbZxw3JOIeSGcb2VLetkQjkXoCPHLiXrJGkzXAF1af9zYu3FfD6fvr3H5V-_beR6maZ6buiMYR3iZTRb_48Xv30_j_vOwJBrnP_rDsauDiMpQEELPM4JSLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES</title><source>Alma/SFX Local Collection</source><creator>何炳生 蒋建林 钱迈建 许娅</creator><creatorcontrib>何炳生 蒋建林 钱迈建 许娅</creatorcontrib><description>In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions.</description><identifier>ISSN: 1004-8979</identifier><identifier>EISSN: 2079-7338</identifier><language>eng</language><publisher>Department of Mathematics, Nanjing University, Nanjing 210093, PRC%Department of Mathematics, California State University, Fullerton, CA92834, USA</publisher><subject>不等式 ; 最接近点计算法 ; 计算方法 ; 预测方法</subject><ispartof>高等学校计算数学学报(英文版), 2005, Vol.14 (1), p.14-30</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85320X/85320X.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>何炳生 蒋建林 钱迈建 许娅</creatorcontrib><title>PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES</title><title>高等学校计算数学学报(英文版)</title><addtitle>Numerical Mathematics A Journal of Chinese Universities English Series</addtitle><description>In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions.</description><subject>不等式</subject><subject>最接近点计算法</subject><subject>计算方法</subject><subject>预测方法</subject><issn>1004-8979</issn><issn>2079-7338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotT1tPgzAYbYwmzul_aHxvUlro5bFC55owioC-klJgDhcWJUZ-_tD5dE6-c_lyrsCKYC4Rp1Rcg1WAcYiE5PIW3E3TgDFlMuArsMtzBZ9UqROYFzoxcWVshmJbFPqPwp2utjYp4cYWcGczW9lMwzdVGPUrqxSaTL-8qtRURpf34KZ3x6l7-Mc1KDe6ircotc8mVinyLCKIURbyyIVSUkJ9K3DoOaesbZxw3JOIeSGcb2VLetkQjkXoCPHLiXrJGkzXAF1af9zYu3FfD6fvr3H5V-_beR6maZ6buiMYR3iZTRb_48Xv30_j_vOwJBrnP_rDsauDiMpQEELPM4JSLQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>何炳生 蒋建林 钱迈建 许娅</creator><general>Department of Mathematics, Nanjing University, Nanjing 210093, PRC%Department of Mathematics, California State University, Fullerton, CA92834, USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2005</creationdate><title>PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES</title><author>何炳生 蒋建林 钱迈建 许娅</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c652-636475a499323cd804c7736dba8a7c256c88acd9d2f9b27084a22c8ac3c96b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>不等式</topic><topic>最接近点计算法</topic><topic>计算方法</topic><topic>预测方法</topic><toplevel>online_resources</toplevel><creatorcontrib>何炳生 蒋建林 钱迈建 许娅</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>高等学校计算数学学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>何炳生 蒋建林 钱迈建 许娅</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES</atitle><jtitle>高等学校计算数学学报(英文版)</jtitle><addtitle>Numerical Mathematics A Journal of Chinese Universities English Series</addtitle><date>2005</date><risdate>2005</risdate><volume>14</volume><issue>1</issue><spage>14</spage><epage>30</epage><pages>14-30</pages><issn>1004-8979</issn><eissn>2079-7338</eissn><abstract>In this paper we study the proximal point algorithm (PPA) based predictioncorrection (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions.</abstract><pub>Department of Mathematics, Nanjing University, Nanjing 210093, PRC%Department of Mathematics, California State University, Fullerton, CA92834, USA</pub><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-8979 |
ispartof | 高等学校计算数学学报(英文版), 2005, Vol.14 (1), p.14-30 |
issn | 1004-8979 2079-7338 |
language | eng |
recordid | cdi_wanfang_journals_gdxxjssxxb_e200501002 |
source | Alma/SFX Local Collection |
subjects | 不等式 最接近点计算法 计算方法 预测方法 |
title | PPA BASED PREDICTION-CORRECTION METHODS FOR MONOTONE VARIATIONAL INEQUALITIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PPA%20BASED%20PREDICTION-CORRECTION%20METHODS%20FOR%20MONOTONE%20VARIATIONAL%20INEQUALITIES&rft.jtitle=%E9%AB%98%E7%AD%89%E5%AD%A6%E6%A0%A1%E8%AE%A1%E7%AE%97%E6%95%B0%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=%E4%BD%95%E7%82%B3%E7%94%9F%20%E8%92%8B%E5%BB%BA%E6%9E%97%20%E9%92%B1%E8%BF%88%E5%BB%BA%20%E8%AE%B8%E5%A8%85&rft.date=2005&rft.volume=14&rft.issue=1&rft.spage=14&rft.epage=30&rft.pages=14-30&rft.issn=1004-8979&rft.eissn=2079-7338&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Egdxxjssxxb_e200501002%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=15394822&rft_wanfj_id=gdxxjssxxb_e200501002&rfr_iscdi=true |