带有强迫项的二阶拟线性微分方程的振动准则

主要利用一元函数u(t)型积分平均辅助函数和广义Riccati变换技巧,建立带有强迫项的二阶拟线性微分方程α-1(p(t)|y′(t)y′(t))′+q(t)|y(t)|β-1|y(t)=e(t)的新的区间振动准则,去掉了某些已有结果中关于"φ′(t)≥0"的限制....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:德州学院学报 2015-08, Vol.31 (4), p.24-28
1. Verfasser: 王培颖
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 4
container_start_page 24
container_title 德州学院学报
container_volume 31
creator 王培颖
description 主要利用一元函数u(t)型积分平均辅助函数和广义Riccati变换技巧,建立带有强迫项的二阶拟线性微分方程α-1(p(t)|y′(t)y′(t))′+q(t)|y(t)|β-1|y(t)=e(t)的新的区间振动准则,去掉了某些已有结果中关于"φ′(t)≥0"的限制.
format Article
fullrecord <record><control><sourceid>cass_wanfa</sourceid><recordid>TN_cdi_wanfang_journals_dzxyxb201504007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cass_id>665943889</cass_id><cqvip_id>665943889</cqvip_id><wanfj_id>dzxyxb201504007</wanfj_id><sourcerecordid>665943889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c787-73fb3d3fdf0a8b23b59200bb7850bb39301c77f53f9f47c9bbf6b8bfca9044c73</originalsourceid><addsrcrecordid>eNpNjT9LAzEAxTMoWGq_gKOL00HuklwScJHiPyi4dD-SnKknetULYuvkILW2nUVFEBctCLqJPcR-GXNnv4Un7eDy3vD78d4cKLkQYodjjBdAxZhIQuRj5HNOSmDVfjxl91f2M_0Zv0weR_ndxXc6mNy8Z_2HPB1n58_269V2O9n1KB_2C5oN3mxvaC87tnu7COa1ODC7lVmXQX1jvV7dcmo7m9vVtZqjKKMORVqiEOlQQ8GkhyThHoRSUkaKRBxBV1GqCdJcY6q4lNqXTGolOMRYUVQGK9PZUxFrETeC_eZJEheHQXjWarekB10CMYR_5tLUVMKYIDYmDHyfcIwY4wVcnsG9Ztw4joqhoyQ6FEn7n_QLSvNtTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>带有强迫项的二阶拟线性微分方程的振动准则</title><source>国家哲学社会科学学术期刊数据库 (National Social Sciences Database)</source><creator>王培颖</creator><creatorcontrib>王培颖</creatorcontrib><description>主要利用一元函数u(t)型积分平均辅助函数和广义Riccati变换技巧,建立带有强迫项的二阶拟线性微分方程α-1(p(t)|y′(t)y′(t))′+q(t)|y(t)|β-1|y(t)=e(t)的新的区间振动准则,去掉了某些已有结果中关于"φ′(t)≥0"的限制.</description><identifier>ISSN: 1004-9444</identifier><language>chi</language><publisher>德州学院</publisher><subject>Riccati变换技巧 ; 区间振动准则 ; 强迫项 ; 微分方程</subject><ispartof>德州学院学报, 2015-08, Vol.31 (4), p.24-28</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/97134B/97134B.jpg</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>王培颖</creatorcontrib><title>带有强迫项的二阶拟线性微分方程的振动准则</title><title>德州学院学报</title><addtitle>Journal of Dezhou University</addtitle><description>主要利用一元函数u(t)型积分平均辅助函数和广义Riccati变换技巧,建立带有强迫项的二阶拟线性微分方程α-1(p(t)|y′(t)y′(t))′+q(t)|y(t)|β-1|y(t)=e(t)的新的区间振动准则,去掉了某些已有结果中关于"φ′(t)≥0"的限制.</description><subject>Riccati变换技巧</subject><subject>区间振动准则</subject><subject>强迫项</subject><subject>微分方程</subject><issn>1004-9444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNjT9LAzEAxTMoWGq_gKOL00HuklwScJHiPyi4dD-SnKknetULYuvkILW2nUVFEBctCLqJPcR-GXNnv4Un7eDy3vD78d4cKLkQYodjjBdAxZhIQuRj5HNOSmDVfjxl91f2M_0Zv0weR_ndxXc6mNy8Z_2HPB1n58_269V2O9n1KB_2C5oN3mxvaC87tnu7COa1ODC7lVmXQX1jvV7dcmo7m9vVtZqjKKMORVqiEOlQQ8GkhyThHoRSUkaKRBxBV1GqCdJcY6q4lNqXTGolOMRYUVQGK9PZUxFrETeC_eZJEheHQXjWarekB10CMYR_5tLUVMKYIDYmDHyfcIwY4wVcnsG9Ztw4joqhoyQ6FEn7n_QLSvNtTA</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>王培颖</creator><general>德州学院</general><general>广东技术师范学院 天河学院,广州,510540</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>NSCOK</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150801</creationdate><title>带有强迫项的二阶拟线性微分方程的振动准则</title><author>王培颖</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c787-73fb3d3fdf0a8b23b59200bb7850bb39301c77f53f9f47c9bbf6b8bfca9044c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2015</creationdate><topic>Riccati变换技巧</topic><topic>区间振动准则</topic><topic>强迫项</topic><topic>微分方程</topic><toplevel>online_resources</toplevel><creatorcontrib>王培颖</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>国家哲学社会科学文献中心 (National Center for Philosophy and Social Sciences Documentation)</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>德州学院学报</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王培颖</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>带有强迫项的二阶拟线性微分方程的振动准则</atitle><jtitle>德州学院学报</jtitle><addtitle>Journal of Dezhou University</addtitle><date>2015-08-01</date><risdate>2015</risdate><volume>31</volume><issue>4</issue><spage>24</spage><epage>28</epage><pages>24-28</pages><issn>1004-9444</issn><abstract>主要利用一元函数u(t)型积分平均辅助函数和广义Riccati变换技巧,建立带有强迫项的二阶拟线性微分方程α-1(p(t)|y′(t)y′(t))′+q(t)|y(t)|β-1|y(t)=e(t)的新的区间振动准则,去掉了某些已有结果中关于"φ′(t)≥0"的限制.</abstract><pub>德州学院</pub><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1004-9444
ispartof 德州学院学报, 2015-08, Vol.31 (4), p.24-28
issn 1004-9444
language chi
recordid cdi_wanfang_journals_dzxyxb201504007
source 国家哲学社会科学学术期刊数据库 (National Social Sciences Database)
subjects Riccati变换技巧
区间振动准则
强迫项
微分方程
title 带有强迫项的二阶拟线性微分方程的振动准则
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cass_wanfa&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%B8%A6%E6%9C%89%E5%BC%BA%E8%BF%AB%E9%A1%B9%E7%9A%84%E4%BA%8C%E9%98%B6%E6%8B%9F%E7%BA%BF%E6%80%A7%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E7%9A%84%E6%8C%AF%E5%8A%A8%E5%87%86%E5%88%99&rft.jtitle=%E5%BE%B7%E5%B7%9E%E5%AD%A6%E9%99%A2%E5%AD%A6%E6%8A%A5&rft.au=%E7%8E%8B%E5%9F%B9%E9%A2%96&rft.date=2015-08-01&rft.volume=31&rft.issue=4&rft.spage=24&rft.epage=28&rft.pages=24-28&rft.issn=1004-9444&rft_id=info:doi/&rft_dat=%3Ccass_wanfa%3E665943889%3C/cass_wanfa%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cass_id=665943889&rft_cqvip_id=665943889&rft_wanfj_id=dzxyxb201504007&rfr_iscdi=true