Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision

The progressive indentation of India into Eurasia generated an E‐W‐trending orthogonal collision belt and a N‐S‐trending oblique collision belt. Compiling available data reveals that ∼70% of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE‐trending, ∼550–km...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geologica Sinica (Beijing) 2023-10, Vol.97 (5), p.1283-1305
Hauptverfasser: YANG, Tiannan, DONG, Mengmeng, XUE, Chuandong, XIN, Di, LIANG, Mingjuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1305
container_issue 5
container_start_page 1283
container_title Acta geologica Sinica (Beijing)
container_volume 97
creator YANG, Tiannan
DONG, Mengmeng
XUE, Chuandong
XIN, Di
LIANG, Mingjuan
description The progressive indentation of India into Eurasia generated an E‐W‐trending orthogonal collision belt and a N‐S‐trending oblique collision belt. Compiling available data reveals that ∼70% of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE‐trending, ∼550–km long and ∼250–km wide magmatic zone (CMZ) that once separated the orthogonal and oblique collision belts. The Latitude 26°N Line is now its southern boundary. The onset timing of magmatism of the CMZ varies gradually from ∼55 Ma in the westernmost part to ∼27 Ma in the easternmost. Then the magmatism successively occurred and suddenly stopped at ∼25 Ma. The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia. Subduction of Paleo‐ and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity. Combined with available geophysical data, the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW—SSE‐direction lithosphere stretching. The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.
doi_str_mv 10.1111/1755-6724.15115
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dzxb_e202305001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dzxb_e202305001</wanfj_id><sourcerecordid>dzxb_e202305001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-94511fff0d5cc608664adef6fca6d4c981370af6768b3f4d2280583bb0a239d93</originalsourceid><addsrcrecordid>eNqFkc1O3DAQxyMEUvnouVdLHDgF7Dj2JtxQ2ALSFiR226s18cfGNBsvdlZlOfEQvAlv1CfBYSkca41ka-Y3_7HmnyTfCD4m8ZyQEWMpH2X5MWGEsK1k9yOzHd8Y47RkhH1J9kK4w5gzTthu8lK5Rnvd9ahq9MJKaNEv8BZ66zo0iwUVkDOobzRi7O_Tc8bQD4gxX0REolsnfwdkOzQdo5mtdX-KriM1RefWa_kmMrF948IyTon8tPe6l43t5oPqeOUhWEBq5YfMGHy7jgjM9VC96pSFKPaPqlzb2hAlD5IdA23QX9_v_eTn9_GsukwnNxdX1dkklbQoWVrmcQ_GGKyYlBwXnOegtOFGAle5LAtCRxgMH_GipiZXWVZgVtC6xpDRUpV0Pzna6P6BzkA3F3du5bs4UajHh1roDGcUM4xJJA835NK7-5UO_SeaFQWlhJZkoE42lPQuBK-NWHq7AL8WBIvBQzE4JgbHxJuHsYO__8C2ev0_XJxVF9NN4yv6L6Ce</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2883313911</pqid></control><display><type>article</type><title>Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision</title><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>YANG, Tiannan ; DONG, Mengmeng ; XUE, Chuandong ; XIN, Di ; LIANG, Mingjuan</creator><creatorcontrib>YANG, Tiannan ; DONG, Mengmeng ; XUE, Chuandong ; XIN, Di ; LIANG, Mingjuan</creatorcontrib><description>The progressive indentation of India into Eurasia generated an E‐W‐trending orthogonal collision belt and a N‐S‐trending oblique collision belt. Compiling available data reveals that ∼70% of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE‐trending, ∼550–km long and ∼250–km wide magmatic zone (CMZ) that once separated the orthogonal and oblique collision belts. The Latitude 26°N Line is now its southern boundary. The onset timing of magmatism of the CMZ varies gradually from ∼55 Ma in the westernmost part to ∼27 Ma in the easternmost. Then the magmatism successively occurred and suddenly stopped at ∼25 Ma. The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia. Subduction of Paleo‐ and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity. Combined with available geophysical data, the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW—SSE‐direction lithosphere stretching. The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.</description><edition>English ed.</edition><identifier>ISSN: 1000-9515</identifier><identifier>EISSN: 1755-6724</identifier><identifier>DOI: 10.1111/1755-6724.15115</identifier><language>eng</language><publisher>Richmond: Wiley Subscription Services, Inc</publisher><subject>Asthenosphere ; Belts ; Cenozoic ; Concretions ; Crusts ; Direction ; Eocene to Oligocene ; geochemistry ; Geophysical data ; Heterogeneity ; Igneous rocks ; Indentation ; Lithosphere ; lithospheric stretch ; Magma ; magmatic zone ; Ocean circulation ; SE Tibet ; Stretching ; Subduction ; tectonics ; temporal/spatial distribution ; Trends ; Upper mantle ; Upwelling</subject><ispartof>Acta geologica Sinica (Beijing), 2023-10, Vol.97 (5), p.1283-1305</ispartof><rights>2023 The Authors. Acta Geologica Sinica (English Edition) published by John Wiley &amp; Sons Australia, Ltd on behalf of Geological Society of China.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-94511fff0d5cc608664adef6fca6d4c981370af6768b3f4d2280583bb0a239d93</citedby><cites>FETCH-LOGICAL-c3895-94511fff0d5cc608664adef6fca6d4c981370af6768b3f4d2280583bb0a239d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dzxb-e/dzxb-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-6724.15115$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-6724.15115$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>YANG, Tiannan</creatorcontrib><creatorcontrib>DONG, Mengmeng</creatorcontrib><creatorcontrib>XUE, Chuandong</creatorcontrib><creatorcontrib>XIN, Di</creatorcontrib><creatorcontrib>LIANG, Mingjuan</creatorcontrib><title>Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision</title><title>Acta geologica Sinica (Beijing)</title><description>The progressive indentation of India into Eurasia generated an E‐W‐trending orthogonal collision belt and a N‐S‐trending oblique collision belt. Compiling available data reveals that ∼70% of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE‐trending, ∼550–km long and ∼250–km wide magmatic zone (CMZ) that once separated the orthogonal and oblique collision belts. The Latitude 26°N Line is now its southern boundary. The onset timing of magmatism of the CMZ varies gradually from ∼55 Ma in the westernmost part to ∼27 Ma in the easternmost. Then the magmatism successively occurred and suddenly stopped at ∼25 Ma. The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia. Subduction of Paleo‐ and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity. Combined with available geophysical data, the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW—SSE‐direction lithosphere stretching. The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.</description><subject>Asthenosphere</subject><subject>Belts</subject><subject>Cenozoic</subject><subject>Concretions</subject><subject>Crusts</subject><subject>Direction</subject><subject>Eocene to Oligocene</subject><subject>geochemistry</subject><subject>Geophysical data</subject><subject>Heterogeneity</subject><subject>Igneous rocks</subject><subject>Indentation</subject><subject>Lithosphere</subject><subject>lithospheric stretch</subject><subject>Magma</subject><subject>magmatic zone</subject><subject>Ocean circulation</subject><subject>SE Tibet</subject><subject>Stretching</subject><subject>Subduction</subject><subject>tectonics</subject><subject>temporal/spatial distribution</subject><subject>Trends</subject><subject>Upper mantle</subject><subject>Upwelling</subject><issn>1000-9515</issn><issn>1755-6724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1O3DAQxyMEUvnouVdLHDgF7Dj2JtxQ2ALSFiR226s18cfGNBsvdlZlOfEQvAlv1CfBYSkca41ka-Y3_7HmnyTfCD4m8ZyQEWMpH2X5MWGEsK1k9yOzHd8Y47RkhH1J9kK4w5gzTthu8lK5Rnvd9ahq9MJKaNEv8BZ66zo0iwUVkDOobzRi7O_Tc8bQD4gxX0REolsnfwdkOzQdo5mtdX-KriM1RefWa_kmMrF948IyTon8tPe6l43t5oPqeOUhWEBq5YfMGHy7jgjM9VC96pSFKPaPqlzb2hAlD5IdA23QX9_v_eTn9_GsukwnNxdX1dkklbQoWVrmcQ_GGKyYlBwXnOegtOFGAle5LAtCRxgMH_GipiZXWVZgVtC6xpDRUpV0Pzna6P6BzkA3F3du5bs4UajHh1roDGcUM4xJJA835NK7-5UO_SeaFQWlhJZkoE42lPQuBK-NWHq7AL8WBIvBQzE4JgbHxJuHsYO__8C2ev0_XJxVF9NN4yv6L6Ce</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>YANG, Tiannan</creator><creator>DONG, Mengmeng</creator><creator>XUE, Chuandong</creator><creator>XIN, Di</creator><creator>LIANG, Mingjuan</creator><general>Wiley Subscription Services, Inc</general><general>Chinese MNR Laboratory of Deep Earth Sciences and Technology,Beijing 100037,China%Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China%Department of Earth Sciences,Kunming University of Science and Technology,Kunming 650093,China%Geological Museum of Guizhou,Guiyang 550081,China</general><general>Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202310</creationdate><title>Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision</title><author>YANG, Tiannan ; DONG, Mengmeng ; XUE, Chuandong ; XIN, Di ; LIANG, Mingjuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-94511fff0d5cc608664adef6fca6d4c981370af6768b3f4d2280583bb0a239d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asthenosphere</topic><topic>Belts</topic><topic>Cenozoic</topic><topic>Concretions</topic><topic>Crusts</topic><topic>Direction</topic><topic>Eocene to Oligocene</topic><topic>geochemistry</topic><topic>Geophysical data</topic><topic>Heterogeneity</topic><topic>Igneous rocks</topic><topic>Indentation</topic><topic>Lithosphere</topic><topic>lithospheric stretch</topic><topic>Magma</topic><topic>magmatic zone</topic><topic>Ocean circulation</topic><topic>SE Tibet</topic><topic>Stretching</topic><topic>Subduction</topic><topic>tectonics</topic><topic>temporal/spatial distribution</topic><topic>Trends</topic><topic>Upper mantle</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YANG, Tiannan</creatorcontrib><creatorcontrib>DONG, Mengmeng</creatorcontrib><creatorcontrib>XUE, Chuandong</creatorcontrib><creatorcontrib>XIN, Di</creatorcontrib><creatorcontrib>LIANG, Mingjuan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta geologica Sinica (Beijing)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YANG, Tiannan</au><au>DONG, Mengmeng</au><au>XUE, Chuandong</au><au>XIN, Di</au><au>LIANG, Mingjuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision</atitle><jtitle>Acta geologica Sinica (Beijing)</jtitle><date>2023-10</date><risdate>2023</risdate><volume>97</volume><issue>5</issue><spage>1283</spage><epage>1305</epage><pages>1283-1305</pages><issn>1000-9515</issn><eissn>1755-6724</eissn><abstract>The progressive indentation of India into Eurasia generated an E‐W‐trending orthogonal collision belt and a N‐S‐trending oblique collision belt. Compiling available data reveals that ∼70% of the Cenozoic igneous rocks in eastern and southeastern Tibet are concentrated within an ENE‐trending, ∼550–km long and ∼250–km wide magmatic zone (CMZ) that once separated the orthogonal and oblique collision belts. The Latitude 26°N Line is now its southern boundary. The onset timing of magmatism of the CMZ varies gradually from ∼55 Ma in the westernmost part to ∼27 Ma in the easternmost. Then the magmatism successively occurred and suddenly stopped at ∼25 Ma. The segmented and coherent chemical variation trends found suggest that the CMZ magmatic rocks were formed due to partial melting of the heterogeneous upper mantle and crusts of Eurasia. Subduction of Paleo‐ and Neotethyan oceanic plates generated this compositional and mineralogical heterogeneity. Combined with available geophysical data, the CMZ was diachronously formed in response to asthenosphere upwelling induced by NNW—SSE‐direction lithosphere stretching. The difference in responses of the orthogonal and oblique collision belts to the indentation of the Indian continent has led to this lithosphere stretching.</abstract><cop>Richmond</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1755-6724.15115</doi><tpages>23</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9515
ispartof Acta geologica Sinica (Beijing), 2023-10, Vol.97 (5), p.1283-1305
issn 1000-9515
1755-6724
language eng
recordid cdi_wanfang_journals_dzxb_e202305001
source Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Asthenosphere
Belts
Cenozoic
Concretions
Crusts
Direction
Eocene to Oligocene
geochemistry
Geophysical data
Heterogeneity
Igneous rocks
Indentation
Lithosphere
lithospheric stretch
Magma
magmatic zone
Ocean circulation
SE Tibet
Stretching
Subduction
tectonics
temporal/spatial distribution
Trends
Upper mantle
Upwelling
title Coherent Chemical Variation Trends of the 55—25 Ma Magmatic Rocks in SE Tibet: N—S Direction Lithospheric Stretching of Eurasia during Early Stage of India—Eurasia Collision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A42%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Chemical%20Variation%20Trends%20of%20the%2055%E2%80%9425%20Ma%20Magmatic%20Rocks%20in%20SE%20Tibet:%20N%E2%80%94S%20Direction%20Lithospheric%20Stretching%20of%20Eurasia%20during%20Early%20Stage%20of%20India%E2%80%94Eurasia%20Collision&rft.jtitle=Acta%20geologica%20Sinica%20(Beijing)&rft.au=YANG,%20Tiannan&rft.date=2023-10&rft.volume=97&rft.issue=5&rft.spage=1283&rft.epage=1305&rft.pages=1283-1305&rft.issn=1000-9515&rft.eissn=1755-6724&rft_id=info:doi/10.1111/1755-6724.15115&rft_dat=%3Cwanfang_jour_proqu%3Edzxb_e202305001%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2883313911&rft_id=info:pmid/&rft_wanfj_id=dzxb_e202305001&rfr_iscdi=true