基于神经网络的目标图像识别方法分析

数字图像处理技术和人工智能技术的发展,让模式识别技术有了巨大的进步,本篇文章主要从人工神经网络的特点和优越性入手,对基于神经网络的目标图像识别方法进行了分析。

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子世界 2017 (12), p.45-45
1. Verfasser: 龚岩
Format: Magazinearticle
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 12
container_start_page 45
container_title 电子世界
container_volume
creator 龚岩
description 数字图像处理技术和人工智能技术的发展,让模式识别技术有了巨大的进步,本篇文章主要从人工神经网络的特点和优越性入手,对基于神经网络的目标图像识别方法进行了分析。
format Magazinearticle
fullrecord <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_dzsj201712035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672532628</cqvip_id><wanfj_id>dzsj201712035</wanfj_id><sourcerecordid>dzsj201712035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575-19258a0a08af9847c7bb5e6aeb9f24ebd3f20f516b46f1ffb2eb66158ca8023e3</originalsourceid><addsrcrecordid>eNotzz9Lw0AYBvAbFCy1X0JwDLz3Xu5yGaX4Dwou3cNdeldTNNUEEV2V2snqoIOV6tKpoIOTLfppTM6PYaBOz_LjeXhWSI0CMA844hpp5HmiASgFlCysEVa8zH_mt246cYuR-7p3i2f3dO3Gb-XrTTH-Lq5Gv--DYjgrHz_Lj4diOCgnd-tk1aqj3DT-s07aO9vt5p7XOtjdb261vJgH3KMhcqlAgVQ2lH4QB1pzI5TRoUXf6A6zCJZToX1hqbUajRaCchkrCcgMq5PNZe25Sq1Ku1Gvf5al1WDUucx7CDSgCIxXbmPp4sN-2j1NKnmSJccqu4hEgJyhqK7-ASJpXYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype></control><display><type>magazinearticle</type><title>基于神经网络的目标图像识别方法分析</title><source>Alma/SFX Local Collection</source><creator>龚岩</creator><creatorcontrib>龚岩</creatorcontrib><description>数字图像处理技术和人工智能技术的发展,让模式识别技术有了巨大的进步,本篇文章主要从人工神经网络的特点和优越性入手,对基于神经网络的目标图像识别方法进行了分析。</description><identifier>ISSN: 1003-0522</identifier><language>chi</language><publisher>广州广电运通金融电子股份有限公司</publisher><subject>人工神经网络 ; 方法分析 ; 目标图象识别</subject><ispartof>电子世界, 2017 (12), p.45-45</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/94357X/94357X.jpg</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>龚岩</creatorcontrib><title>基于神经网络的目标图像识别方法分析</title><title>电子世界</title><addtitle>Electronics World</addtitle><description>数字图像处理技术和人工智能技术的发展,让模式识别技术有了巨大的进步,本篇文章主要从人工神经网络的特点和优越性入手,对基于神经网络的目标图像识别方法进行了分析。</description><subject>人工神经网络</subject><subject>方法分析</subject><subject>目标图象识别</subject><issn>1003-0522</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2017</creationdate><recordtype>magazinearticle</recordtype><recordid>eNotzz9Lw0AYBvAbFCy1X0JwDLz3Xu5yGaX4Dwou3cNdeldTNNUEEV2V2snqoIOV6tKpoIOTLfppTM6PYaBOz_LjeXhWSI0CMA844hpp5HmiASgFlCysEVa8zH_mt246cYuR-7p3i2f3dO3Gb-XrTTH-Lq5Gv--DYjgrHz_Lj4diOCgnd-tk1aqj3DT-s07aO9vt5p7XOtjdb261vJgH3KMhcqlAgVQ2lH4QB1pzI5TRoUXf6A6zCJZToX1hqbUajRaCchkrCcgMq5PNZe25Sq1Ku1Gvf5al1WDUucx7CDSgCIxXbmPp4sN-2j1NKnmSJccqu4hEgJyhqK7-ASJpXYY</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>龚岩</creator><general>广州广电运通金融电子股份有限公司</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2017</creationdate><title>基于神经网络的目标图像识别方法分析</title><author>龚岩</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575-19258a0a08af9847c7bb5e6aeb9f24ebd3f20f516b46f1ffb2eb66158ca8023e3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>chi</language><creationdate>2017</creationdate><topic>人工神经网络</topic><topic>方法分析</topic><topic>目标图象识别</topic><toplevel>online_resources</toplevel><creatorcontrib>龚岩</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>电子世界</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>龚岩</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>基于神经网络的目标图像识别方法分析</atitle><jtitle>电子世界</jtitle><addtitle>Electronics World</addtitle><date>2017</date><risdate>2017</risdate><issue>12</issue><spage>45</spage><epage>45</epage><pages>45-45</pages><issn>1003-0522</issn><abstract>数字图像处理技术和人工智能技术的发展,让模式识别技术有了巨大的进步,本篇文章主要从人工神经网络的特点和优越性入手,对基于神经网络的目标图像识别方法进行了分析。</abstract><pub>广州广电运通金融电子股份有限公司</pub><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1003-0522
ispartof 电子世界, 2017 (12), p.45-45
issn 1003-0522
language chi
recordid cdi_wanfang_journals_dzsj201712035
source Alma/SFX Local Collection
subjects 人工神经网络
方法分析
目标图象识别
title 基于神经网络的目标图像识别方法分析
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C%E7%9A%84%E7%9B%AE%E6%A0%87%E5%9B%BE%E5%83%8F%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95%E5%88%86%E6%9E%90&rft.jtitle=%E7%94%B5%E5%AD%90%E4%B8%96%E7%95%8C&rft.au=%E9%BE%9A%E5%B2%A9&rft.date=2017&rft.issue=12&rft.spage=45&rft.epage=45&rft.pages=45-45&rft.issn=1003-0522&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Edzsj201712035%3C/wanfang_jour_chong%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=672532628&rft_wanfj_id=dzsj201712035&rfr_iscdi=true