AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING
Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By ad...
Gespeichert in:
Veröffentlicht in: | Journal of electronics (China) 2012, Vol.29 (6), p.580-584 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 6 |
container_start_page | 580 |
container_title | Journal of electronics (China) |
container_volume | 29 |
creator | Zhao, Ruizhen Ren, Xiaoxin Han, Xuelian Hu, Shaohai |
description | Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms. |
doi_str_mv | 10.1007/s11767-012-0880-1 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201206016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43869873</cqvip_id><wanfj_id>dzkxxk_e201206016</wanfj_id><sourcerecordid>dzkxxk_e201206016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</originalsourceid><addsrcrecordid>eNp9kE1PwkAURSdGExH9Ae7GpYvqvPlqZzlgKY1ASVtIdDMpLUVBi7Yxor_eaSC6czMvk5x7T3IRugRyA4S4tw2AK12HAHWI5xEHjlAHlGIOkSCOUYdQcB3lUXqKzppmTYhgniAdVOsJDsfTOJr7dziZ6jgJ0wes7_Q0Dec-Huu0PwwnAZ7O4mQWpliPgigO0-EYD6IY9yMb9ZOkRRN_krRkTye2Kprg2A9mIx2Hj_bb0_37NLaPJc7RSZm9NMuLw-2i2cC3GmcUBWFfj5ycSiYdUNSVC64WtKDKKwQXpSdooXKesRJ4zkBAwTllC5UXTICgjHIlXEkWigsBrIuu972fWVVm1cqstx91ZY2m-N7sdhuzpHYuIglIy8Kezett09TL0rzVz69Z_WWAmHZgsx_Y2IRpBzZtP91nGstWq2X9J_gvdHUQPW2r1bvN_Zo486TyXMZ-AB2efbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><source>Alma/SFX Local Collection</source><creator>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</creator><creatorcontrib>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</creatorcontrib><description>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-012-0880-1</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2012, Vol.29 (6), p.580-584</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</citedby><cites>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Zhao, Ruizhen</creatorcontrib><creatorcontrib>Ren, Xiaoxin</creatorcontrib><creatorcontrib>Han, Xuelian</creatorcontrib><creatorcontrib>Hu, Shaohai</creatorcontrib><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwkAURSdGExH9Ae7GpYvqvPlqZzlgKY1ASVtIdDMpLUVBi7Yxor_eaSC6czMvk5x7T3IRugRyA4S4tw2AK12HAHWI5xEHjlAHlGIOkSCOUYdQcB3lUXqKzppmTYhgniAdVOsJDsfTOJr7dziZ6jgJ0wes7_Q0Dec-Huu0PwwnAZ7O4mQWpliPgigO0-EYD6IY9yMb9ZOkRRN_krRkTye2Kprg2A9mIx2Hj_bb0_37NLaPJc7RSZm9NMuLw-2i2cC3GmcUBWFfj5ycSiYdUNSVC64WtKDKKwQXpSdooXKesRJ4zkBAwTllC5UXTICgjHIlXEkWigsBrIuu972fWVVm1cqstx91ZY2m-N7sdhuzpHYuIglIy8Kezett09TL0rzVz69Z_WWAmHZgsx_Y2IRpBzZtP91nGstWq2X9J_gvdHUQPW2r1bvN_Zo486TyXMZ-AB2efbY</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Zhao, Ruizhen</creator><creator>Ren, Xiaoxin</creator><creator>Han, Xuelian</creator><creator>Hu, Shaohai</creator><general>SP Science Press</general><general>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China</general><general>Key Laboratory of Advanced Information Science and Network Technology of Beijing, Beijing 100044, China%Patent Examination Cooperation Center of The Patent Office, SIPO, Beijing 100190, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><author>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ruizhen</creatorcontrib><creatorcontrib>Ren, Xiaoxin</creatorcontrib><creatorcontrib>Han, Xuelian</creatorcontrib><creatorcontrib>Hu, Shaohai</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ruizhen</au><au>Ren, Xiaoxin</au><au>Han, Xuelian</au><au>Hu, Shaohai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>580</spage><epage>584</epage><pages>580-584</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-012-0880-1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2012, Vol.29 (6), p.580-584 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e201206016 |
source | Alma/SFX Local Collection |
subjects | Electrical Engineering Engineering |
title | AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20IMPROVED%20SPARSITY%20ADAPTIVE%20MATCHING%20PURSUIT%20ALGORITHM%20FOR%20COMPRESSIVE%20SENSING%20BASED%20ON%20REGULARIZED%20BACKTRACKING&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Zhao,%20Ruizhen&rft.date=2012&rft.volume=29&rft.issue=6&rft.spage=580&rft.epage=584&rft.pages=580-584&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-012-0880-1&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201206016%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43869873&rft_wanfj_id=dzkxxk_e201206016&rfr_iscdi=true |