AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING

Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronics (China) 2012, Vol.29 (6), p.580-584
Hauptverfasser: Zhao, Ruizhen, Ren, Xiaoxin, Han, Xuelian, Hu, Shaohai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 584
container_issue 6
container_start_page 580
container_title Journal of electronics (China)
container_volume 29
creator Zhao, Ruizhen
Ren, Xiaoxin
Han, Xuelian
Hu, Shaohai
description Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.
doi_str_mv 10.1007/s11767-012-0880-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201206016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43869873</cqvip_id><wanfj_id>dzkxxk_e201206016</wanfj_id><sourcerecordid>dzkxxk_e201206016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</originalsourceid><addsrcrecordid>eNp9kE1PwkAURSdGExH9Ae7GpYvqvPlqZzlgKY1ASVtIdDMpLUVBi7Yxor_eaSC6czMvk5x7T3IRugRyA4S4tw2AK12HAHWI5xEHjlAHlGIOkSCOUYdQcB3lUXqKzppmTYhgniAdVOsJDsfTOJr7dziZ6jgJ0wes7_Q0Dec-Huu0PwwnAZ7O4mQWpliPgigO0-EYD6IY9yMb9ZOkRRN_krRkTye2Kprg2A9mIx2Hj_bb0_37NLaPJc7RSZm9NMuLw-2i2cC3GmcUBWFfj5ycSiYdUNSVC64WtKDKKwQXpSdooXKesRJ4zkBAwTllC5UXTICgjHIlXEkWigsBrIuu972fWVVm1cqstx91ZY2m-N7sdhuzpHYuIglIy8Kezett09TL0rzVz69Z_WWAmHZgsx_Y2IRpBzZtP91nGstWq2X9J_gvdHUQPW2r1bvN_Zo486TyXMZ-AB2efbY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><source>Alma/SFX Local Collection</source><creator>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</creator><creatorcontrib>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</creatorcontrib><description>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-012-0880-1</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2012, Vol.29 (6), p.580-584</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</citedby><cites>FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Zhao, Ruizhen</creatorcontrib><creatorcontrib>Ren, Xiaoxin</creatorcontrib><creatorcontrib>Han, Xuelian</creatorcontrib><creatorcontrib>Hu, Shaohai</creatorcontrib><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwkAURSdGExH9Ae7GpYvqvPlqZzlgKY1ASVtIdDMpLUVBi7Yxor_eaSC6czMvk5x7T3IRugRyA4S4tw2AK12HAHWI5xEHjlAHlGIOkSCOUYdQcB3lUXqKzppmTYhgniAdVOsJDsfTOJr7dziZ6jgJ0wes7_Q0Dec-Huu0PwwnAZ7O4mQWpliPgigO0-EYD6IY9yMb9ZOkRRN_krRkTye2Kprg2A9mIx2Hj_bb0_37NLaPJc7RSZm9NMuLw-2i2cC3GmcUBWFfj5ycSiYdUNSVC64WtKDKKwQXpSdooXKesRJ4zkBAwTllC5UXTICgjHIlXEkWigsBrIuu972fWVVm1cqstx91ZY2m-N7sdhuzpHYuIglIy8Kezett09TL0rzVz69Z_WWAmHZgsx_Y2IRpBzZtP91nGstWq2X9J_gvdHUQPW2r1bvN_Zo486TyXMZ-AB2efbY</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Zhao, Ruizhen</creator><creator>Ren, Xiaoxin</creator><creator>Han, Xuelian</creator><creator>Hu, Shaohai</creator><general>SP Science Press</general><general>Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China</general><general>Key Laboratory of Advanced Information Science and Network Technology of Beijing, Beijing 100044, China%Patent Examination Cooperation Center of The Patent Office, SIPO, Beijing 100190, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</title><author>Zhao, Ruizhen ; Ren, Xiaoxin ; Han, Xuelian ; Hu, Shaohai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2636-19276b49b2d298d545f852d9c4a3f14c3151d4423b9cd3515232495760b945513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Ruizhen</creatorcontrib><creatorcontrib>Ren, Xiaoxin</creatorcontrib><creatorcontrib>Han, Xuelian</creatorcontrib><creatorcontrib>Hu, Shaohai</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Ruizhen</au><au>Ren, Xiaoxin</au><au>Han, Xuelian</au><au>Hu, Shaohai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>580</spage><epage>584</epage><pages>580-584</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Sparsity Adaptive Matching Pursuit (SAMP) algorithm is a widely used reconstruction algorithm for compressive sensing in the case that the sparsity is unknown. In order to match the sparsity more accurately, we presented an improved SAMP algorithm based on Regularized Back- tracking (SAMP-RB). By adapting a regularized backtracking step to SAMP algorithm in each it- eration stage, the proposed algorithm can flexibly remove the inappropriate atoms. The experimental results show that SAMP-RB reconstruction algorithm greatly improves SAMP algorithm both in re- construction quality and computational time. It has better reconstruction efficiency than most of the available matching pursuit algorithms.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-012-0880-1</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2012, Vol.29 (6), p.580-584
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e201206016
source Alma/SFX Local Collection
subjects Electrical Engineering
Engineering
title AN IMPROVED SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR COMPRESSIVE SENSING BASED ON REGULARIZED BACKTRACKING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T18%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20IMPROVED%20SPARSITY%20ADAPTIVE%20MATCHING%20PURSUIT%20ALGORITHM%20FOR%20COMPRESSIVE%20SENSING%20BASED%20ON%20REGULARIZED%20BACKTRACKING&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Zhao,%20Ruizhen&rft.date=2012&rft.volume=29&rft.issue=6&rft.spage=580&rft.epage=584&rft.pages=580-584&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-012-0880-1&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201206016%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43869873&rft_wanfj_id=dzkxxk_e201206016&rfr_iscdi=true