THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX

Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Fir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronics (China) 2012, Vol.29 (6), p.572-579
Hauptverfasser: Zhu, Yanping, Song, Yaoliang, Chen, Jinli, Zhao, Delin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 6
container_start_page 572
container_title Journal of electronics (China)
container_volume 29
creator Zhu, Yanping
Song, Yaoliang
Chen, Jinli
Zhao, Delin
description Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.
doi_str_mv 10.1007/s11767-012-0852-5
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201206015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43869872</cqvip_id><wanfj_id>dzkxxk_e201206015</wanfj_id><sourcerecordid>dzkxxk_e201206015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</originalsourceid><addsrcrecordid>eNp9kEtPhDAUhRujiePjB7irSxfovYUCXeJYhyYDGGASddPwHJ-MQoyjv97iGN25umnu-c65PYQcIZwigHc2IHquZwEyC3zOLL5FJiiEbYGLfJtMgKFnCZ-xXbI3DA8A3PY5TMhLHkoaqllIU5kl80WukphGKkpoGlwEKc1uslxG9DzI5AX9XsUqUrcqntGRzPIgV1mupsGcTpNQpjKeSppcmkd0ZRxHKpNxNuqjIE_V9QHZaYunoTn8mftkcSnzaWjNk9loY1UMObecpi6bpix4W5a2cGyvqoWLrQuC-U7BbY6-ub-oBVSNY_6JdYVFCVUpsCqdFux9crLxfS-6tuiW-mH11ncmUdefj-v1o26YKQtcQG60uNFW_WoY-qbVL_39c9F_aAQ91qs39WpD6LFePTJswwxG2y2b_i_gP-j4J-hu1S1fDfeb5Ni-K3yP2V97I38B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><source>Alma/SFX Local Collection</source><creator>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</creator><creatorcontrib>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</creatorcontrib><description>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-012-0852-5</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2012, Vol.29 (6), p.572-579</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Song, Yaoliang</creatorcontrib><creatorcontrib>Chen, Jinli</creatorcontrib><creatorcontrib>Zhao, Delin</creatorcontrib><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPhDAUhRujiePjB7irSxfovYUCXeJYhyYDGGASddPwHJ-MQoyjv97iGN25umnu-c65PYQcIZwigHc2IHquZwEyC3zOLL5FJiiEbYGLfJtMgKFnCZ-xXbI3DA8A3PY5TMhLHkoaqllIU5kl80WukphGKkpoGlwEKc1uslxG9DzI5AX9XsUqUrcqntGRzPIgV1mupsGcTpNQpjKeSppcmkd0ZRxHKpNxNuqjIE_V9QHZaYunoTn8mftkcSnzaWjNk9loY1UMObecpi6bpix4W5a2cGyvqoWLrQuC-U7BbY6-ub-oBVSNY_6JdYVFCVUpsCqdFux9crLxfS-6tuiW-mH11ncmUdefj-v1o26YKQtcQG60uNFW_WoY-qbVL_39c9F_aAQ91qs39WpD6LFePTJswwxG2y2b_i_gP-j4J-hu1S1fDfeb5Ni-K3yP2V97I38B</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Zhu, Yanping</creator><creator>Song, Yaoliang</creator><creator>Chen, Jinli</creator><creator>Zhao, Delin</creator><general>SP Science Press</general><general>Nanjing University of Information Science and Technology, Nanjing 210044, China%Nanjing University of Science &amp; Technology, Nanjing 210094, China%Nanjing University of Information Science and Technology, Nanjing 210044, China</general><general>Nanjing University of Science &amp; Technology, Nanjing 210094, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><author>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Song, Yaoliang</creatorcontrib><creatorcontrib>Chen, Jinli</creatorcontrib><creatorcontrib>Zhao, Delin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yanping</au><au>Song, Yaoliang</au><au>Chen, Jinli</au><au>Zhao, Delin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>572</spage><epage>579</epage><pages>572-579</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-012-0852-5</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2012, Vol.29 (6), p.572-579
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e201206015
source Alma/SFX Local Collection
subjects Electrical Engineering
Engineering
title THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20HIGH%20RESOLUTION%20MIMO%20RADAR%20SYSTEM%20BASED%20ON%20MINIMIZING%20THE%20STATISTICAL%20COHERENCE%20OF%20COMPRESSED%20SENSING%20MATRIX&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Zhu,%20Yanping&rft.date=2012&rft.volume=29&rft.issue=6&rft.spage=572&rft.epage=579&rft.pages=572-579&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-012-0852-5&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201206015%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43869872&rft_wanfj_id=dzkxxk_e201206015&rfr_iscdi=true