THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX
Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Fir...
Gespeichert in:
Veröffentlicht in: | Journal of electronics (China) 2012, Vol.29 (6), p.572-579 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | 6 |
container_start_page | 572 |
container_title | Journal of electronics (China) |
container_volume | 29 |
creator | Zhu, Yanping Song, Yaoliang Chen, Jinli Zhao, Delin |
description | Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection. |
doi_str_mv | 10.1007/s11767-012-0852-5 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201206015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43869872</cqvip_id><wanfj_id>dzkxxk_e201206015</wanfj_id><sourcerecordid>dzkxxk_e201206015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</originalsourceid><addsrcrecordid>eNp9kEtPhDAUhRujiePjB7irSxfovYUCXeJYhyYDGGASddPwHJ-MQoyjv97iGN25umnu-c65PYQcIZwigHc2IHquZwEyC3zOLL5FJiiEbYGLfJtMgKFnCZ-xXbI3DA8A3PY5TMhLHkoaqllIU5kl80WukphGKkpoGlwEKc1uslxG9DzI5AX9XsUqUrcqntGRzPIgV1mupsGcTpNQpjKeSppcmkd0ZRxHKpNxNuqjIE_V9QHZaYunoTn8mftkcSnzaWjNk9loY1UMObecpi6bpix4W5a2cGyvqoWLrQuC-U7BbY6-ub-oBVSNY_6JdYVFCVUpsCqdFux9crLxfS-6tuiW-mH11ncmUdefj-v1o26YKQtcQG60uNFW_WoY-qbVL_39c9F_aAQ91qs39WpD6LFePTJswwxG2y2b_i_gP-j4J-hu1S1fDfeb5Ni-K3yP2V97I38B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><source>Alma/SFX Local Collection</source><creator>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</creator><creatorcontrib>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</creatorcontrib><description>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-012-0852-5</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2012, Vol.29 (6), p.572-579</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Song, Yaoliang</creatorcontrib><creatorcontrib>Chen, Jinli</creatorcontrib><creatorcontrib>Zhao, Delin</creatorcontrib><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPhDAUhRujiePjB7irSxfovYUCXeJYhyYDGGASddPwHJ-MQoyjv97iGN25umnu-c65PYQcIZwigHc2IHquZwEyC3zOLL5FJiiEbYGLfJtMgKFnCZ-xXbI3DA8A3PY5TMhLHkoaqllIU5kl80WukphGKkpoGlwEKc1uslxG9DzI5AX9XsUqUrcqntGRzPIgV1mupsGcTpNQpjKeSppcmkd0ZRxHKpNxNuqjIE_V9QHZaYunoTn8mftkcSnzaWjNk9loY1UMObecpi6bpix4W5a2cGyvqoWLrQuC-U7BbY6-ub-oBVSNY_6JdYVFCVUpsCqdFux9crLxfS-6tuiW-mH11ncmUdefj-v1o26YKQtcQG60uNFW_WoY-qbVL_39c9F_aAQ91qs39WpD6LFePTJswwxG2y2b_i_gP-j4J-hu1S1fDfeb5Ni-K3yP2V97I38B</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Zhu, Yanping</creator><creator>Song, Yaoliang</creator><creator>Chen, Jinli</creator><creator>Zhao, Delin</creator><general>SP Science Press</general><general>Nanjing University of Information Science and Technology, Nanjing 210044, China%Nanjing University of Science & Technology, Nanjing 210094, China%Nanjing University of Information Science and Technology, Nanjing 210044, China</general><general>Nanjing University of Science & Technology, Nanjing 210094, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2012</creationdate><title>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</title><author>Zhu, Yanping ; Song, Yaoliang ; Chen, Jinli ; Zhao, Delin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2155-4edbeeba5fbb39437cd961f609284a53518850ad90ce49931dc1ab0cb91cb4f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yanping</creatorcontrib><creatorcontrib>Song, Yaoliang</creatorcontrib><creatorcontrib>Chen, Jinli</creatorcontrib><creatorcontrib>Zhao, Delin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yanping</au><au>Song, Yaoliang</au><au>Chen, Jinli</au><au>Zhao, Delin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2012</date><risdate>2012</risdate><volume>29</volume><issue>6</issue><spage>572</spage><epage>579</epage><pages>572-579</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sam- pling theory. It can accomplish compressive sampling and signal recovery based on the sparsity of in- terested signal, the randomness of measurement matrix and nonlinear optimization method of signal recovery. Firstly, the CS principle is reviewed. Then the ambiguity function of Multiple-Input Multi- ple-Output (MIMO) radar is deduced. After that, combined with CS theory, the ambiguity function of MIMO radar is analyzed and simulated in detail. At last, the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed. Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent. But the coherent ambiguity function has higher side lobes, which caused a deterioration in radar target detection performances. The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed. And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-012-0852-5</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2012, Vol.29 (6), p.572-579 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e201206015 |
source | Alma/SFX Local Collection |
subjects | Electrical Engineering Engineering |
title | THE HIGH RESOLUTION MIMO RADAR SYSTEM BASED ON MINIMIZING THE STATISTICAL COHERENCE OF COMPRESSED SENSING MATRIX |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20HIGH%20RESOLUTION%20MIMO%20RADAR%20SYSTEM%20BASED%20ON%20MINIMIZING%20THE%20STATISTICAL%20COHERENCE%20OF%20COMPRESSED%20SENSING%20MATRIX&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Zhu,%20Yanping&rft.date=2012&rft.volume=29&rft.issue=6&rft.spage=572&rft.epage=579&rft.pages=572-579&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-012-0852-5&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201206015%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=43869872&rft_wanfj_id=dzkxxk_e201206015&rfr_iscdi=true |