PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT
In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the cor...
Gespeichert in:
Veröffentlicht in: | Journal of electronics (China) 2010, Vol.27 (6), p.815-821 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 821 |
---|---|
container_issue | 6 |
container_start_page | 815 |
container_title | Journal of electronics (China) |
container_volume | 27 |
creator | Fu, Haiyan Kong, Xiangwei Yang, Nan Zhou, Jianhui Chu, Fengtao |
description | In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible. |
doi_str_mv | 10.1007/s11767-011-0446-7 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201006012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38880177</cqvip_id><wanfj_id>dzkxxk_e201006012</wanfj_id><sourcerecordid>dzkxxk_e201006012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAGxmZDBc20kcs6Wp-4MKQWnKajmJU2ghhUSIwtPjKhVsTF6-c491EDqncEUBxHVLqQgEAUoJeF5AxAHqUSk5gYD6h6gHjAoiQ8aO0UnbrgB8HvrQQzcPaTJcxBme3kVjhVOVpVP1GM3wIJqrIU7ucZyQkYqyRarmOBnhbKJwMrhVcXaKjirz0tqz_dtHi5HK4gmZJeNpHM1IwajPSM4s94wEVrFCWuEBdz_ywKelDLy8qnxaeCWXvgm4yW1ZWGsCW4As8iCEipW8jy67u5-mrky91KvNR1M7oy6_19vtWlsGrkEAlLkt7bZFs2nbxlb6rXl-Nc2XpqB3oXQXSrtQehdKC8ewjmndtl7a5k_wH3SxFz1t6uW7435NPAxDoELwH3zCb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><source>Alma/SFX Local Collection</source><creator>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</creator><creatorcontrib>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</creatorcontrib><description>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-011-0446-7</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2010, Vol.27 (6), p.815-821</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fu, Haiyan</creatorcontrib><creatorcontrib>Kong, Xiangwei</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><creatorcontrib>Chu, Fengtao</creatorcontrib><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAGxmZDBc20kcs6Wp-4MKQWnKajmJU2ghhUSIwtPjKhVsTF6-c491EDqncEUBxHVLqQgEAUoJeF5AxAHqUSk5gYD6h6gHjAoiQ8aO0UnbrgB8HvrQQzcPaTJcxBme3kVjhVOVpVP1GM3wIJqrIU7ucZyQkYqyRarmOBnhbKJwMrhVcXaKjirz0tqz_dtHi5HK4gmZJeNpHM1IwajPSM4s94wEVrFCWuEBdz_ywKelDLy8qnxaeCWXvgm4yW1ZWGsCW4As8iCEipW8jy67u5-mrky91KvNR1M7oy6_19vtWlsGrkEAlLkt7bZFs2nbxlb6rXl-Nc2XpqB3oXQXSrtQehdKC8ewjmndtl7a5k_wH3SxFz1t6uW7435NPAxDoELwH3zCb6A</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Fu, Haiyan</creator><creator>Kong, Xiangwei</creator><creator>Yang, Nan</creator><creator>Zhou, Jianhui</creator><creator>Chu, Fengtao</creator><general>SP Science Press</general><general>Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology,Dalian 116023, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2010</creationdate><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><author>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haiyan</creatorcontrib><creatorcontrib>Kong, Xiangwei</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><creatorcontrib>Chu, Fengtao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haiyan</au><au>Kong, Xiangwei</au><au>Yang, Nan</au><au>Zhou, Jianhui</au><au>Chu, Fengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2010</date><risdate>2010</risdate><volume>27</volume><issue>6</issue><spage>815</spage><epage>821</epage><pages>815-821</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-011-0446-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2010, Vol.27 (6), p.815-821 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e201006012 |
source | Alma/SFX Local Collection |
subjects | Electrical Engineering Engineering |
title | PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRODUCT%20IMAGE%20RETRIEVAL%20BASED%20ON%20CO-FEATURES%20OF%20THE%20OBJECT&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Fu,%20Haiyan&rft.date=2010&rft.volume=27&rft.issue=6&rft.spage=815&rft.epage=821&rft.pages=815-821&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-011-0446-7&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201006012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=38880177&rft_wanfj_id=dzkxxk_e201006012&rfr_iscdi=true |