PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT

In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronics (China) 2010, Vol.27 (6), p.815-821
Hauptverfasser: Fu, Haiyan, Kong, Xiangwei, Yang, Nan, Zhou, Jianhui, Chu, Fengtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 821
container_issue 6
container_start_page 815
container_title Journal of electronics (China)
container_volume 27
creator Fu, Haiyan
Kong, Xiangwei
Yang, Nan
Zhou, Jianhui
Chu, Fengtao
description In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.
doi_str_mv 10.1007/s11767-011-0446-7
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e201006012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>38880177</cqvip_id><wanfj_id>dzkxxk_e201006012</wanfj_id><sourcerecordid>dzkxxk_e201006012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAGxmZDBc20kcs6Wp-4MKQWnKajmJU2ghhUSIwtPjKhVsTF6-c491EDqncEUBxHVLqQgEAUoJeF5AxAHqUSk5gYD6h6gHjAoiQ8aO0UnbrgB8HvrQQzcPaTJcxBme3kVjhVOVpVP1GM3wIJqrIU7ucZyQkYqyRarmOBnhbKJwMrhVcXaKjirz0tqz_dtHi5HK4gmZJeNpHM1IwajPSM4s94wEVrFCWuEBdz_ywKelDLy8qnxaeCWXvgm4yW1ZWGsCW4As8iCEipW8jy67u5-mrky91KvNR1M7oy6_19vtWlsGrkEAlLkt7bZFs2nbxlb6rXl-Nc2XpqB3oXQXSrtQehdKC8ewjmndtl7a5k_wH3SxFz1t6uW7435NPAxDoELwH3zCb6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><source>Alma/SFX Local Collection</source><creator>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</creator><creatorcontrib>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</creatorcontrib><description>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-011-0446-7</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering</subject><ispartof>Journal of electronics (China), 2010, Vol.27 (6), p.815-821</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fu, Haiyan</creatorcontrib><creatorcontrib>Kong, Xiangwei</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><creatorcontrib>Chu, Fengtao</creatorcontrib><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAGxmZDBc20kcs6Wp-4MKQWnKajmJU2ghhUSIwtPjKhVsTF6-c491EDqncEUBxHVLqQgEAUoJeF5AxAHqUSk5gYD6h6gHjAoiQ8aO0UnbrgB8HvrQQzcPaTJcxBme3kVjhVOVpVP1GM3wIJqrIU7ucZyQkYqyRarmOBnhbKJwMrhVcXaKjirz0tqz_dtHi5HK4gmZJeNpHM1IwajPSM4s94wEVrFCWuEBdz_ywKelDLy8qnxaeCWXvgm4yW1ZWGsCW4As8iCEipW8jy67u5-mrky91KvNR1M7oy6_19vtWlsGrkEAlLkt7bZFs2nbxlb6rXl-Nc2XpqB3oXQXSrtQehdKC8ewjmndtl7a5k_wH3SxFz1t6uW7435NPAxDoELwH3zCb6A</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Fu, Haiyan</creator><creator>Kong, Xiangwei</creator><creator>Yang, Nan</creator><creator>Zhou, Jianhui</creator><creator>Chu, Fengtao</creator><general>SP Science Press</general><general>Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology,Dalian 116023, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2010</creationdate><title>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</title><author>Fu, Haiyan ; Kong, Xiangwei ; Yang, Nan ; Zhou, Jianhui ; Chu, Fengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2152-b2e34a902f2c9e74036154051d964bff51c4d395a63abedceea6ec09cb680f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Haiyan</creatorcontrib><creatorcontrib>Kong, Xiangwei</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Zhou, Jianhui</creatorcontrib><creatorcontrib>Chu, Fengtao</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Haiyan</au><au>Kong, Xiangwei</au><au>Yang, Nan</au><au>Zhou, Jianhui</au><au>Chu, Fengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2010</date><risdate>2010</risdate><volume>27</volume><issue>6</issue><spage>815</spage><epage>821</epage><pages>815-821</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>In this paper, we propose a product image retrieval method based on the object contour corners, image texture and color. The product image mainly highlights the object and its background is very simple. According to these characteristics, we represent the object using its contour, and detect the corners of contour to reduce the number of pixels. Every corner is described using its approximate curvature based on distance. In addition, the Block Difference of Inverse Probabilities (BDIP) and Block Variation of Local Correlation (BVLC) texture features and color moment are extracted from image's HIS color space. Finally, dynamic time warping method is used to match features with different length. In order to demonstrate the effect of the proposed method, we carry out experiments in Mi- crosoft product image database, and compare it with other feature descriptors. The retrieval precision and recall curves show that our method is feasible.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-011-0446-7</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2010, Vol.27 (6), p.815-821
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e201006012
source Alma/SFX Local Collection
subjects Electrical Engineering
Engineering
title PRODUCT IMAGE RETRIEVAL BASED ON CO-FEATURES OF THE OBJECT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A48%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PRODUCT%20IMAGE%20RETRIEVAL%20BASED%20ON%20CO-FEATURES%20OF%20THE%20OBJECT&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Fu,%20Haiyan&rft.date=2010&rft.volume=27&rft.issue=6&rft.spage=815&rft.epage=821&rft.pages=815-821&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-011-0446-7&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e201006012%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=38880177&rft_wanfj_id=dzkxxk_e201006012&rfr_iscdi=true