CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION

A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronics (China) 2009-11, Vol.26 (6), p.771-776
Hauptverfasser: Yang, Yi, Han, Chongzhao, Han, Deqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue 6
container_start_page 771
container_title Journal of electronics (China)
container_volume 26
creator Yang, Yi
Han, Chongzhao
Han, Deqiang
description A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.
doi_str_mv 10.1007/s11767-009-0086-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200906008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33253377</cqvip_id><wanfj_id>dzkxxk_e200906008</wanfj_id><sourcerecordid>dzkxxk_e200906008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</originalsourceid><addsrcrecordid>eNp9kM1LwzAchoMoOKd_gLfizUM1H23SHmuXboHSjrYTPIU0a-Y-7LRFnP71pmzgzUP4hfyeJy-8ANwi-IAgZI89QowyF8LQnoC65AyMUBgSF1Lkn4MRxIi5YYDxJbjq-w2EPgl8OAJFnEZlKRLBCydZlCLPnKeo5BPHXvizmPAs5k4143nx4kTZxBFV6UTzeSriqBpgkTlJZJGCx_k0E8PbNbgwatc3N6c5BouEV_HMTfOp1VJXY0QD18OGKQahYVAzo706NDVlHqs182gdUK1qEkJCtUeopynDWuNaoZpqs_RD3ZAxuD_--6Vao9qV3Ow_u9YmyuXP9nDYygbbOiC1fVgWHVnd7fu-a4x879ZvqvuWCMqhQHksUFpDDgVKYh18dHrLtqum-wv4T7o7Bb3u29WH9WSt9Nasd43dYp8Qxsgvl7R2oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><source>Alma/SFX Local Collection</source><creator>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</creator><creatorcontrib>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</creatorcontrib><description>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-009-0086-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering ; 人脸识别 ; 分类器融合 ; 多分类器 ; 最近特征线 ; 融合方法 ; 证据理论 ; 证据组合</subject><ispartof>Journal of electronics (China), 2009-11, Vol.26 (6), p.771-776</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer Berlin Heidelberg 2009</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Han, Deqiang</creatorcontrib><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>人脸识别</subject><subject>分类器融合</subject><subject>多分类器</subject><subject>最近特征线</subject><subject>融合方法</subject><subject>证据理论</subject><subject>证据组合</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAchoMoOKd_gLfizUM1H23SHmuXboHSjrYTPIU0a-Y-7LRFnP71pmzgzUP4hfyeJy-8ANwi-IAgZI89QowyF8LQnoC65AyMUBgSF1Lkn4MRxIi5YYDxJbjq-w2EPgl8OAJFnEZlKRLBCydZlCLPnKeo5BPHXvizmPAs5k4143nx4kTZxBFV6UTzeSriqBpgkTlJZJGCx_k0E8PbNbgwatc3N6c5BouEV_HMTfOp1VJXY0QD18OGKQahYVAzo706NDVlHqs182gdUK1qEkJCtUeopynDWuNaoZpqs_RD3ZAxuD_--6Vao9qV3Ow_u9YmyuXP9nDYygbbOiC1fVgWHVnd7fu-a4x879ZvqvuWCMqhQHksUFpDDgVKYh18dHrLtqum-wv4T7o7Bb3u29WH9WSt9Nasd43dYp8Qxsgvl7R2oA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Yang, Yi</creator><creator>Han, Chongzhao</creator><creator>Han, Deqiang</creator><general>SP Science Press</general><general>Institute of Integrated Automation,Xi'an Jiaotong University,Xi'an 710049,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200911</creationdate><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><author>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>人脸识别</topic><topic>分类器融合</topic><topic>多分类器</topic><topic>最近特征线</topic><topic>融合方法</topic><topic>证据理论</topic><topic>证据组合</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Han, Deqiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yi</au><au>Han, Chongzhao</au><au>Han, Deqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2009-11</date><risdate>2009</risdate><volume>26</volume><issue>6</issue><spage>771</spage><epage>776</epage><pages>771-776</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-009-0086-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2009-11, Vol.26 (6), p.771-776
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e200906008
source Alma/SFX Local Collection
subjects Electrical Engineering
Engineering
人脸识别
分类器融合
多分类器
最近特征线
融合方法
证据理论
证据组合
title CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLASSIFIER%20FUSION%20BASED%20ON%20EVIDENCE%20THEORY%20AND%20ITS%20APPLICATION%20IN%20FACE%20RECOGNITION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Yang,%20Yi&rft.date=2009-11&rft.volume=26&rft.issue=6&rft.spage=771&rft.epage=776&rft.pages=771-776&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-009-0086-3&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200906008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=33253377&rft_wanfj_id=dzkxxk_e200906008&rfr_iscdi=true