CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION
A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low com...
Gespeichert in:
Veröffentlicht in: | Journal of electronics (China) 2009-11, Vol.26 (6), p.771-776 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 776 |
---|---|
container_issue | 6 |
container_start_page | 771 |
container_title | Journal of electronics (China) |
container_volume | 26 |
creator | Yang, Yi Han, Chongzhao Han, Deqiang |
description | A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective. |
doi_str_mv | 10.1007/s11767-009-0086-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200906008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33253377</cqvip_id><wanfj_id>dzkxxk_e200906008</wanfj_id><sourcerecordid>dzkxxk_e200906008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</originalsourceid><addsrcrecordid>eNp9kM1LwzAchoMoOKd_gLfizUM1H23SHmuXboHSjrYTPIU0a-Y-7LRFnP71pmzgzUP4hfyeJy-8ANwi-IAgZI89QowyF8LQnoC65AyMUBgSF1Lkn4MRxIi5YYDxJbjq-w2EPgl8OAJFnEZlKRLBCydZlCLPnKeo5BPHXvizmPAs5k4143nx4kTZxBFV6UTzeSriqBpgkTlJZJGCx_k0E8PbNbgwatc3N6c5BouEV_HMTfOp1VJXY0QD18OGKQahYVAzo706NDVlHqs182gdUK1qEkJCtUeopynDWuNaoZpqs_RD3ZAxuD_--6Vao9qV3Ow_u9YmyuXP9nDYygbbOiC1fVgWHVnd7fu-a4x879ZvqvuWCMqhQHksUFpDDgVKYh18dHrLtqum-wv4T7o7Bb3u29WH9WSt9Nasd43dYp8Qxsgvl7R2oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><source>Alma/SFX Local Collection</source><creator>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</creator><creatorcontrib>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</creatorcontrib><description>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-009-0086-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering ; 人脸识别 ; 分类器融合 ; 多分类器 ; 最近特征线 ; 融合方法 ; 证据理论 ; 证据组合</subject><ispartof>Journal of electronics (China), 2009-11, Vol.26 (6), p.771-776</ispartof><rights>Science Press, Institute of Electronics, CAS and Springer Berlin Heidelberg 2009</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Han, Deqiang</creatorcontrib><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>人脸识别</subject><subject>分类器融合</subject><subject>多分类器</subject><subject>最近特征线</subject><subject>融合方法</subject><subject>证据理论</subject><subject>证据组合</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAchoMoOKd_gLfizUM1H23SHmuXboHSjrYTPIU0a-Y-7LRFnP71pmzgzUP4hfyeJy-8ANwi-IAgZI89QowyF8LQnoC65AyMUBgSF1Lkn4MRxIi5YYDxJbjq-w2EPgl8OAJFnEZlKRLBCydZlCLPnKeo5BPHXvizmPAs5k4143nx4kTZxBFV6UTzeSriqBpgkTlJZJGCx_k0E8PbNbgwatc3N6c5BouEV_HMTfOp1VJXY0QD18OGKQahYVAzo706NDVlHqs182gdUK1qEkJCtUeopynDWuNaoZpqs_RD3ZAxuD_--6Vao9qV3Ow_u9YmyuXP9nDYygbbOiC1fVgWHVnd7fu-a4x879ZvqvuWCMqhQHksUFpDDgVKYh18dHrLtqum-wv4T7o7Bb3u29WH9WSt9Nasd43dYp8Qxsgvl7R2oA</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Yang, Yi</creator><creator>Han, Chongzhao</creator><creator>Han, Deqiang</creator><general>SP Science Press</general><general>Institute of Integrated Automation,Xi'an Jiaotong University,Xi'an 710049,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>200911</creationdate><title>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</title><author>Yang, Yi ; Han, Chongzhao ; Han, Deqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2168-42f7a700f70c7fc4b9fb6747bc746b86cab39036c4364c672cc2ba1b6cfd59ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>人脸识别</topic><topic>分类器融合</topic><topic>多分类器</topic><topic>最近特征线</topic><topic>融合方法</topic><topic>证据理论</topic><topic>证据组合</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Han, Chongzhao</creatorcontrib><creatorcontrib>Han, Deqiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yi</au><au>Han, Chongzhao</au><au>Han, Deqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2009-11</date><risdate>2009</risdate><volume>26</volume><issue>6</issue><spage>771</spage><epage>776</epage><pages>771-776</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>A multiple classifier fusion approach based on evidence combination is proposed in this paper. The individual classifier is designed based on a refined Nearest Feature Line (NFL), which is called Center-based Nearest Neighbor (CNN). CNN retains the advantages of NFL while it has rela- tively low computational cost. Different member classifiers are trained based on different feature spaces respectively. Corresponding mass functions can be generated based on proposed mass function de- termination approach. The classification decision can be made based on the combined evidence and better classification performance can be expected. Experimental results on face recognition provided verify that the new approach is rational and effective.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-009-0086-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2009-11, Vol.26 (6), p.771-776 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e200906008 |
source | Alma/SFX Local Collection |
subjects | Electrical Engineering Engineering 人脸识别 分类器融合 多分类器 最近特征线 融合方法 证据理论 证据组合 |
title | CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CLASSIFIER%20FUSION%20BASED%20ON%20EVIDENCE%20THEORY%20AND%20ITS%20APPLICATION%20IN%20FACE%20RECOGNITION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Yang,%20Yi&rft.date=2009-11&rft.volume=26&rft.issue=6&rft.spage=771&rft.epage=776&rft.pages=771-776&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-009-0086-3&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200906008%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=33253377&rft_wanfj_id=dzkxxk_e200906008&rfr_iscdi=true |