基于噪声子空间特征值重构的DOA估计算法

TN911.7; 该文针对非等功率信号波达方向(DOA)估计问题,提出一种基于噪声子空间特征值重构(Eigenvalue Reconstruction of Noise Subspace, ERNS)的超分辨算法。算法对接收信号自相关矩阵进行特征值分解,通过重构噪声空间特征值以及引入虚拟信源来构造新的接收信号自相关矩阵,对该矩阵进行特征值分解得到新的噪声空间特征值。当虚拟信源与实际信源入射方向相同时,新噪声空间特征值与重构后噪声空间特征值保持不变,利用这一特性来估计信源入射方向。该文给出算法的原理及实现步骤,并通过仿真进行原理验证与性能分析,仿真结果表明与其他子空间算法和MUSIC 算法相比,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:电子与信息学报 2014 (12), p.2876-2881
Hauptverfasser: 方庆园, 韩勇, 金铭, 宋立众, 乔晓林
Format: Artikel
Sprache:chi
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:TN911.7; 该文针对非等功率信号波达方向(DOA)估计问题,提出一种基于噪声子空间特征值重构(Eigenvalue Reconstruction of Noise Subspace, ERNS)的超分辨算法。算法对接收信号自相关矩阵进行特征值分解,通过重构噪声空间特征值以及引入虚拟信源来构造新的接收信号自相关矩阵,对该矩阵进行特征值分解得到新的噪声空间特征值。当虚拟信源与实际信源入射方向相同时,新噪声空间特征值与重构后噪声空间特征值保持不变,利用这一特性来估计信源入射方向。该文给出算法的原理及实现步骤,并通过仿真进行原理验证与性能分析,仿真结果表明与其他子空间算法和MUSIC 算法相比,ERNS算法能够提高弱信号估计成功的概率。
ISSN:1009-5896
DOI:10.3724/SP.J.1146.2013.02014