基于张量广义全变分最小的稀疏角度螺旋CT重建
目的 为减少螺旋CT扫描X射线辐射剂量,提出一种基于凸集投影的张量广义全变分最小(TTGV-POCS)的稀疏角度螺旋CT迭代重建算法.方法 将螺旋CT三维体数据看作三阶张量,利用张量广义全变分(TTGV)最小约束刻画其三维图像的数据特性,并纳入凸集投影迭代重建框架,实现稀疏角度螺旋CT的鲁棒重建.TTGV-POCS算法充分利用螺旋CT图像数据的一阶梯度与二阶梯度的空间结构稀疏性和三维数据层间相关性,可有效抑制稀疏角度重建图像中的伪影与噪声,并较好保持图像边缘信息.结果 XCAT体模数据与病人扫描数据的实验结果表明,TTGV-POCS算法相比现有重建算法在降低噪声、去除伪影和保持边缘等方面均有较...
Gespeichert in:
Veröffentlicht in: | 南方医科大学学报 2019, Vol.39 (10), p.1213-1220 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | chi |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!