Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet

Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 ​GPa and 823 ​K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Di xue qian yuan. 2021-03, Vol.12 (2), p.947-956
Hauptverfasser: Ge, Jianhua, Zhang, Baohua, Xiong, Zili, He, Lanfang, Li, Heping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 956
container_issue 2
container_start_page 947
container_title Di xue qian yuan.
container_volume 12
creator Ge, Jianhua
Zhang, Baohua
Xiong, Zili
He, Lanfang
Li, Heping
description Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 ​GPa and 823 ​K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust. [Display omitted] •Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 ​K and 0.8–3 ​GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.
doi_str_mv 10.1016/j.gsf.2020.01.008
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dxqy_e202102035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dxqy_e202102035</wanfj_id><els_id>S167498712030030X</els_id><sourcerecordid>dxqy_e202102035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</originalsourceid><addsrcrecordid>eNp9Uc1u1DAYtBCVWLV9AG6ROHBK-Ow4_hEnVEFBrdQelrPlxPauV7vJ1nZKy6k3Dhx5AZ6lj9InqbOpxA1Llq35ZjzyDEJvMVQYMPuwqVbRVQQIVIArAPEKLUgjRCmxJK_RAjNOSyk4foNOY9xAXpwLzmGBfi3XNuz0ttiHYW9D8jYWgyvWOvxsx7DyyRa6N4UZ-8M1FVCJp4c_9ePfp4ff59f6MK0BMibIjF4cML_bb32nkx_6WLghFGltp30ws7fDdpxGk9fStzadoCOnt9GevpzH6PuXz8uzr-Xl1fm3s0-XZUcBUtniupXaOMk0w4ZwyqR0DRDeUgpGY0rAUikcd4xhJmsMgpi2pp02lGnB62P0fn73h-6d7ldqM4yhz47K3N3cK5tDxDnHusnMdzMzJ3Mz2pj-UUlDhOBNLUlm4ZnVhSHGYJ3aB7_T4V5hUFM5aqNyOWoqRwFWuZys-ThrbP7orbdBxc7bvrPGB9slZQb_H_UzMmKaAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528875392</pqid></control><display><type>article</type><title>Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</creator><creatorcontrib>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</creatorcontrib><description>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 ​GPa and 823 ​K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust. [Display omitted] •Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 ​K and 0.8–3 ​GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</description><identifier>ISSN: 1674-9871</identifier><identifier>EISSN: 2588-9192</identifier><identifier>DOI: 10.1016/j.gsf.2020.01.008</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Constraint modelling ; Dunite ; Geophysics ; Harzburgite ; Temperature ; Thermal conductivity ; Thermal diffusivity ; Thermal evolution ; Thermodynamic properties ; Tibet</subject><ispartof>Di xue qian yuan., 2021-03, Vol.12 (2), p.947-956</ispartof><rights>2020 China University of Geosciences (Beijing) and Peking University</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</citedby><cites>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dxqy-e/dxqy-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gsf.2020.01.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ge, Jianhua</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Xiong, Zili</creatorcontrib><creatorcontrib>He, Lanfang</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><title>Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet</title><title>Di xue qian yuan.</title><description>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 ​GPa and 823 ​K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust. [Display omitted] •Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 ​K and 0.8–3 ​GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</description><subject>Constraint modelling</subject><subject>Dunite</subject><subject>Geophysics</subject><subject>Harzburgite</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal evolution</subject><subject>Thermodynamic properties</subject><subject>Tibet</subject><issn>1674-9871</issn><issn>2588-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1u1DAYtBCVWLV9AG6ROHBK-Ow4_hEnVEFBrdQelrPlxPauV7vJ1nZKy6k3Dhx5AZ6lj9InqbOpxA1Llq35ZjzyDEJvMVQYMPuwqVbRVQQIVIArAPEKLUgjRCmxJK_RAjNOSyk4foNOY9xAXpwLzmGBfi3XNuz0ttiHYW9D8jYWgyvWOvxsx7DyyRa6N4UZ-8M1FVCJp4c_9ePfp4ff59f6MK0BMibIjF4cML_bb32nkx_6WLghFGltp30ws7fDdpxGk9fStzadoCOnt9GevpzH6PuXz8uzr-Xl1fm3s0-XZUcBUtniupXaOMk0w4ZwyqR0DRDeUgpGY0rAUikcd4xhJmsMgpi2pp02lGnB62P0fn73h-6d7ldqM4yhz47K3N3cK5tDxDnHusnMdzMzJ3Mz2pj-UUlDhOBNLUlm4ZnVhSHGYJ3aB7_T4V5hUFM5aqNyOWoqRwFWuZys-ThrbP7orbdBxc7bvrPGB9slZQb_H_UzMmKaAQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ge, Jianhua</creator><creator>Zhang, Baohua</creator><creator>Xiong, Zili</creator><creator>He, Lanfang</creator><creator>Li, Heping</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China%State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China</general><general>Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210301</creationdate><title>Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet</title><author>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constraint modelling</topic><topic>Dunite</topic><topic>Geophysics</topic><topic>Harzburgite</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal evolution</topic><topic>Thermodynamic properties</topic><topic>Tibet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jianhua</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Xiong, Zili</creatorcontrib><creatorcontrib>He, Lanfang</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Di xue qian yuan.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jianhua</au><au>Zhang, Baohua</au><au>Xiong, Zili</au><au>He, Lanfang</au><au>Li, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet</atitle><jtitle>Di xue qian yuan.</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>1674-9871</issn><eissn>2588-9192</eissn><abstract>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 ​GPa and 823 ​K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust. [Display omitted] •Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 ​K and 0.8–3 ​GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.gsf.2020.01.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-9871
ispartof Di xue qian yuan., 2021-03, Vol.12 (2), p.947-956
issn 1674-9871
2588-9192
language eng
recordid cdi_wanfang_journals_dxqy_e202102035
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Constraint modelling
Dunite
Geophysics
Harzburgite
Temperature
Thermal conductivity
Thermal diffusivity
Thermal evolution
Thermodynamic properties
Tibet
title Thermal properties of harzburgite and dunite at 0.8–3 ​GPa and 300–823 ​K and implications for the thermal evolution of Tibet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20harzburgite%20and%20dunite%20at%200.8%E2%80%933%C2%A0%E2%80%8BGPa%20and%20300%E2%80%93823%C2%A0%E2%80%8BK%20and%20implications%20for%20the%20thermal%20evolution%20of%20Tibet&rft.jtitle=Di%20xue%20qian%20yuan.&rft.au=Ge,%20Jianhua&rft.date=2021-03-01&rft.volume=12&rft.issue=2&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=1674-9871&rft.eissn=2588-9192&rft_id=info:doi/10.1016/j.gsf.2020.01.008&rft_dat=%3Cwanfang_jour_proqu%3Edxqy_e202102035%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528875392&rft_id=info:pmid/&rft_wanfj_id=dxqy_e202102035&rft_els_id=S167498712030030X&rfr_iscdi=true