Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet
Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically d...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2021-03, Vol.12 (2), p.947-956 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 956 |
---|---|
container_issue | 2 |
container_start_page | 947 |
container_title | Di xue qian yuan. |
container_volume | 12 |
creator | Ge, Jianhua Zhang, Baohua Xiong, Zili He, Lanfang Li, Heping |
description | Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.
[Display omitted]
•Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 K and 0.8–3 GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust. |
doi_str_mv | 10.1016/j.gsf.2020.01.008 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dxqy_e202102035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dxqy_e202102035</wanfj_id><els_id>S167498712030030X</els_id><sourcerecordid>dxqy_e202102035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</originalsourceid><addsrcrecordid>eNp9Uc1u1DAYtBCVWLV9AG6ROHBK-Ow4_hEnVEFBrdQelrPlxPauV7vJ1nZKy6k3Dhx5AZ6lj9InqbOpxA1Llq35ZjzyDEJvMVQYMPuwqVbRVQQIVIArAPEKLUgjRCmxJK_RAjNOSyk4foNOY9xAXpwLzmGBfi3XNuz0ttiHYW9D8jYWgyvWOvxsx7DyyRa6N4UZ-8M1FVCJp4c_9ePfp4ff59f6MK0BMibIjF4cML_bb32nkx_6WLghFGltp30ws7fDdpxGk9fStzadoCOnt9GevpzH6PuXz8uzr-Xl1fm3s0-XZUcBUtniupXaOMk0w4ZwyqR0DRDeUgpGY0rAUikcd4xhJmsMgpi2pp02lGnB62P0fn73h-6d7ldqM4yhz47K3N3cK5tDxDnHusnMdzMzJ3Mz2pj-UUlDhOBNLUlm4ZnVhSHGYJ3aB7_T4V5hUFM5aqNyOWoqRwFWuZys-ThrbP7orbdBxc7bvrPGB9slZQb_H_UzMmKaAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528875392</pqid></control><display><type>article</type><title>Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</creator><creatorcontrib>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</creatorcontrib><description>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.
[Display omitted]
•Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 K and 0.8–3 GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</description><identifier>ISSN: 1674-9871</identifier><identifier>EISSN: 2588-9192</identifier><identifier>DOI: 10.1016/j.gsf.2020.01.008</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Constraint modelling ; Dunite ; Geophysics ; Harzburgite ; Temperature ; Thermal conductivity ; Thermal diffusivity ; Thermal evolution ; Thermodynamic properties ; Tibet</subject><ispartof>Di xue qian yuan., 2021-03, Vol.12 (2), p.947-956</ispartof><rights>2020 China University of Geosciences (Beijing) and Peking University</rights><rights>Copyright Elsevier Science Ltd. Mar 2021</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</citedby><cites>FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dxqy-e/dxqy-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gsf.2020.01.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ge, Jianhua</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Xiong, Zili</creatorcontrib><creatorcontrib>He, Lanfang</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><title>Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet</title><title>Di xue qian yuan.</title><description>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.
[Display omitted]
•Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 K and 0.8–3 GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</description><subject>Constraint modelling</subject><subject>Dunite</subject><subject>Geophysics</subject><subject>Harzburgite</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal evolution</subject><subject>Thermodynamic properties</subject><subject>Tibet</subject><issn>1674-9871</issn><issn>2588-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9Uc1u1DAYtBCVWLV9AG6ROHBK-Ow4_hEnVEFBrdQelrPlxPauV7vJ1nZKy6k3Dhx5AZ6lj9InqbOpxA1Llq35ZjzyDEJvMVQYMPuwqVbRVQQIVIArAPEKLUgjRCmxJK_RAjNOSyk4foNOY9xAXpwLzmGBfi3XNuz0ttiHYW9D8jYWgyvWOvxsx7DyyRa6N4UZ-8M1FVCJp4c_9ePfp4ff59f6MK0BMibIjF4cML_bb32nkx_6WLghFGltp30ws7fDdpxGk9fStzadoCOnt9GevpzH6PuXz8uzr-Xl1fm3s0-XZUcBUtniupXaOMk0w4ZwyqR0DRDeUgpGY0rAUikcd4xhJmsMgpi2pp02lGnB62P0fn73h-6d7ldqM4yhz47K3N3cK5tDxDnHusnMdzMzJ3Mz2pj-UUlDhOBNLUlm4ZnVhSHGYJ3aB7_T4V5hUFM5aqNyOWoqRwFWuZys-ThrbP7orbdBxc7bvrPGB9slZQb_H_UzMmKaAQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ge, Jianhua</creator><creator>Zhang, Baohua</creator><creator>Xiong, Zili</creator><creator>He, Lanfang</creator><creator>Li, Heping</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China%State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China</general><general>Key Laboratory for High-Temperature and High-Pressure Study of the Earth's Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210301</creationdate><title>Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet</title><author>Ge, Jianhua ; Zhang, Baohua ; Xiong, Zili ; He, Lanfang ; Li, Heping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-b13b9adf96a61d274699f5027b440da1420e498f7f6616931082db34cad46a873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Constraint modelling</topic><topic>Dunite</topic><topic>Geophysics</topic><topic>Harzburgite</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal evolution</topic><topic>Thermodynamic properties</topic><topic>Tibet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jianhua</creatorcontrib><creatorcontrib>Zhang, Baohua</creatorcontrib><creatorcontrib>Xiong, Zili</creatorcontrib><creatorcontrib>He, Lanfang</creatorcontrib><creatorcontrib>Li, Heping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Di xue qian yuan.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jianhua</au><au>Zhang, Baohua</au><au>Xiong, Zili</au><au>He, Lanfang</au><au>Li, Heping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet</atitle><jtitle>Di xue qian yuan.</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>12</volume><issue>2</issue><spage>947</spage><epage>956</epage><pages>947-956</pages><issn>1674-9871</issn><eissn>2588-9192</eissn><abstract>Thermal diffusivity (D) and thermal conductivity (κ) of harzburgite and dunite from Luobusha ophiolite were simultaneously measured up to 3 GPa and 823 K using the transient plane-source method in a multi anvil apparatus. The results show that the values of D and κ of both samples systematically decrease with increasing temperature and increase with increasing pressure. By combination of the thermal physical data of rocks and minerals and geophysical constraints, we performed numerical simulation on the thermal evolution of Tibet vary over depth, distance and geologic ages. The present results provide new constraints on occurrence of partial melting and its geophysical significance beneath Tibetan crust.
[Display omitted]
•Thermal diffusivity and conductivity of harzburgite and dunite were measured at 300–823 K and 0.8–3 GPa.•D and κ systematically decrease with increasing T and increase with increasing P.•Numerical simulations provide new constraints on occurrence of partial melting beneath Tibetan crust.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.gsf.2020.01.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-9871 |
ispartof | Di xue qian yuan., 2021-03, Vol.12 (2), p.947-956 |
issn | 1674-9871 2588-9192 |
language | eng |
recordid | cdi_wanfang_journals_dxqy_e202102035 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Constraint modelling Dunite Geophysics Harzburgite Temperature Thermal conductivity Thermal diffusivity Thermal evolution Thermodynamic properties Tibet |
title | Thermal properties of harzburgite and dunite at 0.8–3 GPa and 300–823 K and implications for the thermal evolution of Tibet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20properties%20of%20harzburgite%20and%20dunite%20at%200.8%E2%80%933%C2%A0%E2%80%8BGPa%20and%20300%E2%80%93823%C2%A0%E2%80%8BK%20and%20implications%20for%20the%20thermal%20evolution%20of%20Tibet&rft.jtitle=Di%20xue%20qian%20yuan.&rft.au=Ge,%20Jianhua&rft.date=2021-03-01&rft.volume=12&rft.issue=2&rft.spage=947&rft.epage=956&rft.pages=947-956&rft.issn=1674-9871&rft.eissn=2588-9192&rft_id=info:doi/10.1016/j.gsf.2020.01.008&rft_dat=%3Cwanfang_jour_proqu%3Edxqy_e202102035%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528875392&rft_id=info:pmid/&rft_wanfj_id=dxqy_e202102035&rft_els_id=S167498712030030X&rfr_iscdi=true |