Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
Accurate assessment of undrained shear strength (USS) for soft sensitive clays is a great concern in geotechnical engineering practice. This study applies novel data-driven extreme gradient boosting (XGBoost) and random forest (RF) ensemble learning methods for capturing the relationships between th...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2021-01, Vol.12 (1), p.469-477 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!