Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization

Accurate assessment of undrained shear strength (USS) for soft sensitive clays is a great concern in geotechnical engineering practice. This study applies novel data-driven extreme gradient boosting (XGBoost) and random forest (RF) ensemble learning methods for capturing the relationships between th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Di xue qian yuan. 2021-01, Vol.12 (1), p.469-477
Hauptverfasser: Zhang, Wengang, Wu, Chongzhi, Zhong, Haiyi, Li, Yongqin, Wang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!