Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning

This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Di xue qian yuan. 2021-01, Vol.12 (1), p.365-373
Hauptverfasser: Zhang, Runhong, Wu, Chongzhi, Goh, Anthony T.C., Böhlke, Thomas, Zhang, Wengang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 373
container_issue 1
container_start_page 365
container_title Di xue qian yuan.
container_volume 12
creator Zhang, Runhong
Wu, Chongzhi
Goh, Anthony T.C.
Böhlke, Thomas
Zhang, Wengang
description This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way. [Display omitted] •FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.
doi_str_mv 10.1016/j.gsf.2020.03.003
format Article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dxqy_e202101025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dxqy_e202101025</wanfj_id><els_id>S1674987120300621</els_id><sourcerecordid>dxqy_e202101025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</originalsourceid><addsrcrecordid>eNp90DtvwyAQB3APrdQozQfoxtbJLuAHtjpVUfqQInVpZ3SYw8VysAtpHt--RO5cFsRxf9D9kuSO0YxRVj30WRdMximnGc0zSvOrZMEqUaRNLdhNsgqhp3EJUQtBF8m0CXu7g70dHRkN0RamLw_djhxhGIhGM2B7uQzEjD6ecSLKQ4ua4KmFwxy0joCzYdz7cbItaQc4B_ITrOsIuoA7NSAZELyLldvk2sAQcPW3L5PP583H-jXdvr-8rZ-2aZsLvk8BkGkKvDTK1A1ArWqTVwoBBaiK5aXSAhquC6ScVdSYpuCoyrqsEBqli3yZ3M_vHsEZcJ3sxx_v4o9Sn77PEqNQ9KK8jJ1s7mz9GIJHIycfSfxZMiovprKX0VReTCXNZTSNmcc5g3GEg0UvQ2vRRRfrI5jUo_0n_QshEYQd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</creator><creatorcontrib>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</creatorcontrib><description>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way. [Display omitted] •FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</description><identifier>ISSN: 1674-9871</identifier><identifier>DOI: 10.1016/j.gsf.2020.03.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anisotropic clay ; Ensemble learning ; eXtreme gradient boosting ; NGI-ADP ; Random forest regression ; Wall deflection</subject><ispartof>Di xue qian yuan., 2021-01, Vol.12 (1), p.365-373</ispartof><rights>2020 China University of Geosciences (Beijing) and Peking University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</citedby><cites>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dxqy-e/dxqy-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gsf.2020.03.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zhang, Runhong</creatorcontrib><creatorcontrib>Wu, Chongzhi</creatorcontrib><creatorcontrib>Goh, Anthony T.C.</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><title>Di xue qian yuan.</title><description>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way. [Display omitted] •FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</description><subject>Anisotropic clay</subject><subject>Ensemble learning</subject><subject>eXtreme gradient boosting</subject><subject>NGI-ADP</subject><subject>Random forest regression</subject><subject>Wall deflection</subject><issn>1674-9871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90DtvwyAQB3APrdQozQfoxtbJLuAHtjpVUfqQInVpZ3SYw8VysAtpHt--RO5cFsRxf9D9kuSO0YxRVj30WRdMximnGc0zSvOrZMEqUaRNLdhNsgqhp3EJUQtBF8m0CXu7g70dHRkN0RamLw_djhxhGIhGM2B7uQzEjD6ecSLKQ4ua4KmFwxy0joCzYdz7cbItaQc4B_ITrOsIuoA7NSAZELyLldvk2sAQcPW3L5PP583H-jXdvr-8rZ-2aZsLvk8BkGkKvDTK1A1ArWqTVwoBBaiK5aXSAhquC6ScVdSYpuCoyrqsEBqli3yZ3M_vHsEZcJ3sxx_v4o9Sn77PEqNQ9KK8jJ1s7mz9GIJHIycfSfxZMiovprKX0VReTCXNZTSNmcc5g3GEg0UvQ2vRRRfrI5jUo_0n_QshEYQd</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zhang, Runhong</creator><creator>Wu, Chongzhi</creator><creator>Goh, Anthony T.C.</creator><creator>Böhlke, Thomas</creator><creator>Zhang, Wengang</creator><general>Elsevier B.V</general><general>School of Civil Engineering, Chongqing University, Chongqing, 400045, China%School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore%Institute of Engineering Mechanics, Karlsruhe Institute of Technology(KIT), Kaiserstrafβe 10, 76131, Karlsruhe, Germany%School of Civil Engineering, Chongqing University, Chongqing, 400045, China</general><general>Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing, 400045, China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202101</creationdate><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><author>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropic clay</topic><topic>Ensemble learning</topic><topic>eXtreme gradient boosting</topic><topic>NGI-ADP</topic><topic>Random forest regression</topic><topic>Wall deflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Runhong</creatorcontrib><creatorcontrib>Wu, Chongzhi</creatorcontrib><creatorcontrib>Goh, Anthony T.C.</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Di xue qian yuan.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Runhong</au><au>Wu, Chongzhi</au><au>Goh, Anthony T.C.</au><au>Böhlke, Thomas</au><au>Zhang, Wengang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</atitle><jtitle>Di xue qian yuan.</jtitle><date>2021-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>365</spage><epage>373</epage><pages>365-373</pages><issn>1674-9871</issn><abstract>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way. [Display omitted] •FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.gsf.2020.03.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-9871
ispartof Di xue qian yuan., 2021-01, Vol.12 (1), p.365-373
issn 1674-9871
language eng
recordid cdi_wanfang_journals_dxqy_e202101025
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Anisotropic clay
Ensemble learning
eXtreme gradient boosting
NGI-ADP
Random forest regression
Wall deflection
title Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20diaphragm%20wall%20deflections%20for%20deep%20braced%20excavation%20in%20anisotropic%20clays%20using%20ensemble%20learning&rft.jtitle=Di%20xue%20qian%20yuan.&rft.au=Zhang,%20Runhong&rft.date=2021-01&rft.volume=12&rft.issue=1&rft.spage=365&rft.epage=373&rft.pages=365-373&rft.issn=1674-9871&rft_id=info:doi/10.1016/j.gsf.2020.03.003&rft_dat=%3Cwanfang_jour_cross%3Edxqy_e202101025%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=dxqy_e202101025&rft_els_id=S1674987120300621&rfr_iscdi=true