Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning
This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive pa...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2021-01, Vol.12 (1), p.365-373 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 1 |
container_start_page | 365 |
container_title | Di xue qian yuan. |
container_volume | 12 |
creator | Zhang, Runhong Wu, Chongzhi Goh, Anthony T.C. Böhlke, Thomas Zhang, Wengang |
description | This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way.
[Display omitted]
•FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation. |
doi_str_mv | 10.1016/j.gsf.2020.03.003 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dxqy_e202101025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dxqy_e202101025</wanfj_id><els_id>S1674987120300621</els_id><sourcerecordid>dxqy_e202101025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</originalsourceid><addsrcrecordid>eNp90DtvwyAQB3APrdQozQfoxtbJLuAHtjpVUfqQInVpZ3SYw8VysAtpHt--RO5cFsRxf9D9kuSO0YxRVj30WRdMximnGc0zSvOrZMEqUaRNLdhNsgqhp3EJUQtBF8m0CXu7g70dHRkN0RamLw_djhxhGIhGM2B7uQzEjD6ecSLKQ4ua4KmFwxy0joCzYdz7cbItaQc4B_ITrOsIuoA7NSAZELyLldvk2sAQcPW3L5PP583H-jXdvr-8rZ-2aZsLvk8BkGkKvDTK1A1ArWqTVwoBBaiK5aXSAhquC6ScVdSYpuCoyrqsEBqli3yZ3M_vHsEZcJ3sxx_v4o9Sn77PEqNQ9KK8jJ1s7mz9GIJHIycfSfxZMiovprKX0VReTCXNZTSNmcc5g3GEg0UvQ2vRRRfrI5jUo_0n_QshEYQd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</creator><creatorcontrib>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</creatorcontrib><description>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way.
[Display omitted]
•FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</description><identifier>ISSN: 1674-9871</identifier><identifier>DOI: 10.1016/j.gsf.2020.03.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anisotropic clay ; Ensemble learning ; eXtreme gradient boosting ; NGI-ADP ; Random forest regression ; Wall deflection</subject><ispartof>Di xue qian yuan., 2021-01, Vol.12 (1), p.365-373</ispartof><rights>2020 China University of Geosciences (Beijing) and Peking University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</citedby><cites>FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dxqy-e/dxqy-e.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gsf.2020.03.003$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Zhang, Runhong</creatorcontrib><creatorcontrib>Wu, Chongzhi</creatorcontrib><creatorcontrib>Goh, Anthony T.C.</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><title>Di xue qian yuan.</title><description>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way.
[Display omitted]
•FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</description><subject>Anisotropic clay</subject><subject>Ensemble learning</subject><subject>eXtreme gradient boosting</subject><subject>NGI-ADP</subject><subject>Random forest regression</subject><subject>Wall deflection</subject><issn>1674-9871</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90DtvwyAQB3APrdQozQfoxtbJLuAHtjpVUfqQInVpZ3SYw8VysAtpHt--RO5cFsRxf9D9kuSO0YxRVj30WRdMximnGc0zSvOrZMEqUaRNLdhNsgqhp3EJUQtBF8m0CXu7g70dHRkN0RamLw_djhxhGIhGM2B7uQzEjD6ecSLKQ4ua4KmFwxy0joCzYdz7cbItaQc4B_ITrOsIuoA7NSAZELyLldvk2sAQcPW3L5PP583H-jXdvr-8rZ-2aZsLvk8BkGkKvDTK1A1ArWqTVwoBBaiK5aXSAhquC6ScVdSYpuCoyrqsEBqli3yZ3M_vHsEZcJ3sxx_v4o9Sn77PEqNQ9KK8jJ1s7mz9GIJHIycfSfxZMiovprKX0VReTCXNZTSNmcc5g3GEg0UvQ2vRRRfrI5jUo_0n_QshEYQd</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Zhang, Runhong</creator><creator>Wu, Chongzhi</creator><creator>Goh, Anthony T.C.</creator><creator>Böhlke, Thomas</creator><creator>Zhang, Wengang</creator><general>Elsevier B.V</general><general>School of Civil Engineering, Chongqing University, Chongqing, 400045, China%School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore%Institute of Engineering Mechanics, Karlsruhe Institute of Technology(KIT), Kaiserstrafβe 10, 76131, Karlsruhe, Germany%School of Civil Engineering, Chongqing University, Chongqing, 400045, China</general><general>Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing, 400045, China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>202101</creationdate><title>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</title><author>Zhang, Runhong ; Wu, Chongzhi ; Goh, Anthony T.C. ; Böhlke, Thomas ; Zhang, Wengang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-aae1d0a25fbf89aa8b8f36beae7ab6135bd7a92d4e02160ff942eb5856ea9bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropic clay</topic><topic>Ensemble learning</topic><topic>eXtreme gradient boosting</topic><topic>NGI-ADP</topic><topic>Random forest regression</topic><topic>Wall deflection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Runhong</creatorcontrib><creatorcontrib>Wu, Chongzhi</creatorcontrib><creatorcontrib>Goh, Anthony T.C.</creatorcontrib><creatorcontrib>Böhlke, Thomas</creatorcontrib><creatorcontrib>Zhang, Wengang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Di xue qian yuan.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Runhong</au><au>Wu, Chongzhi</au><au>Goh, Anthony T.C.</au><au>Böhlke, Thomas</au><au>Zhang, Wengang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning</atitle><jtitle>Di xue qian yuan.</jtitle><date>2021-01</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>365</spage><epage>373</epage><pages>365-373</pages><issn>1674-9871</issn><abstract>This paper adopts the NGI-ADP soil model to carry out finite element analysis, based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated. More than one thousand finite element cases were numerically analyzed, followed by extensive parametric studies. Surrogate models were developed via ensemble learning methods (ELMs), including the eXtreme Gradient Boosting (XGBoost), and Random Forest Regression (RFR) to predict the maximum lateral wall deformation (δhmax). Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression (DTR), Multilayer Perceptron Regression (MLPR), and Multivariate Adaptive Regression Splines (MARS). This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast, alternative way.
[Display omitted]
•FE analysis considering soil anisotropy via NGI-ADP model carried out.•Effects of anisotropy on diaphragm wall deflections evaluated.•ELMs as well as soft computing models for prediction of lateral wall deformation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.gsf.2020.03.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-9871 |
ispartof | Di xue qian yuan., 2021-01, Vol.12 (1), p.365-373 |
issn | 1674-9871 |
language | eng |
recordid | cdi_wanfang_journals_dxqy_e202101025 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Anisotropic clay Ensemble learning eXtreme gradient boosting NGI-ADP Random forest regression Wall deflection |
title | Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20diaphragm%20wall%20deflections%20for%20deep%20braced%20excavation%20in%20anisotropic%20clays%20using%20ensemble%20learning&rft.jtitle=Di%20xue%20qian%20yuan.&rft.au=Zhang,%20Runhong&rft.date=2021-01&rft.volume=12&rft.issue=1&rft.spage=365&rft.epage=373&rft.pages=365-373&rft.issn=1674-9871&rft_id=info:doi/10.1016/j.gsf.2020.03.003&rft_dat=%3Cwanfang_jour_cross%3Edxqy_e202101025%3C/wanfang_jour_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=dxqy_e202101025&rft_els_id=S1674987120300621&rfr_iscdi=true |