Experimental and numerical investigation of Weibullian behavior of grain crushing strength

The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage. The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing. A grain shape librar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Di xue qian yuan. 2020-03, Vol.11 (2), p.401-411
Hauptverfasser: Huang, Quanshui, Zhou, Wei, Ma, Gang, Ng, Tang-Tat, Xu, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage. The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing. A grain shape library was constructed for grain shape analysis with different shape descriptors. The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration. Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns. Each grain was compressed diametrically between flat platens. As expected, the values of the stress at bulk fracture follow a Weibull distribution. A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated, which was accomplished in the discrete element modeling (DEM) of the single grain crushing test. The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered. The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles. Finally, three parametric studies were presented evaluating the effects of micro-crack density, micro-crack disorder, and grain morphology on the Weibullian behavior of the crushing strength, none of which has previously been thoroughly considered. These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength. [Display omitted] •Numerical and experimental investigation of the single grain crushing test.•Grain morphology acquisition and grain stability analysis.•Grain fracture strength decreases with increasing micro-crack density.•Micro-crack disorder has a great impact on the variability of grain fracture strength.•A flatter shape results in a less variability in the grain fracture strength.
ISSN:1674-9871
2588-9192
DOI:10.1016/j.gsf.2019.07.007