Statistical analyses of Global U-Pb Database 2017
The method of obtaining zircon samples affects estimation of the global U-Pb age distribution. Researchers typically collect zircons via convenience sampling and cluster sampling. When using these techniques, weight adjustments proportional to the areas of the sampled regions improve upon unweighted...
Gespeichert in:
Veröffentlicht in: | Di xue qian yuan. 2018, Vol.9 (1), p.121-145 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 1 |
container_start_page | 121 |
container_title | Di xue qian yuan. |
container_volume | 9 |
creator | Puetz, Stephen J. Ganade, Carlos E. Zimmermann, Udo Borchardt, Glenn |
description | The method of obtaining zircon samples affects estimation of the global U-Pb age distribution. Researchers typically collect zircons via convenience sampling and cluster sampling. When using these techniques, weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates. Here, grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages. Preliminary tests involve two age models. Model-1 uses the most precise U-Pb ages as the best ages. Model-2 uses the 206Pb/238U age as the best age if it is less than a 1000 Ma cutoff, otherwise it uses the 207Pb/206Pb age as the best age. A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models. However, after applying acceptance criteria to include only the most precise analyses with minimal discordance, a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the 1000 Ma cutoff point. Because of the excessive rejection rate for Model-2, we select Model-1 as the preferred model. After eliminating all rejected samples, the remaining analyses use only Model-1 ages for five rock-type subsets of the database: igneous, meta-igneous, sedimentary, meta-sedimentary, and modern sediments. Next, time-series plots, cross-correlation analyses, and spectral analyses determine the degree of alignment among the time-series and their periodicity. For all rock types, the U-Pb age distributions are similar for ages older than 500 Ma, but align poorly for ages younger than 500 Ma. The similarities (>500 Ma) and differences (<500 Ma) highlight how reductionism from a detailed database enhances understanding of time-dependent sequences, such as erosion, detrital transport mechanisms,lithification, and metamorphism. Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of w91-Myr, w273-Myr, and w819-Myr among the various rock types. |
doi_str_mv | 10.1016/j.gsf.2017.06.001 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dxqy_e201801008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>7000399332</cqvip_id><wanfj_id>dxqy_e201801008</wanfj_id><els_id>S1674987117301056</els_id><sourcerecordid>dxqy_e201801008</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-26aa3e6d6230a024f0e1d725916f3027e843b67c8cedc03d789a6b05abb93d133</originalsourceid><addsrcrecordid>eNp9kU9Lw0AQxRdRsNR-AG8BD54SZ3aT_YMnqVoFQUF7XibJpibUpM2mar-9W1rx5l4Wlt_bee8NY-cICQLKqyZZ-CrhgCoBmQDgERvxTOvYoOHHbIRSpbHRCk_ZxPsGwlFKKwUjhq8DDbUf6oKWEbW03Hrno66KZssuD0_z-CWPbmmgnLyLdiPO2ElFS-8mh3vM5vd3b9OH-Ol59ji9eYopzXCIuSQSTpaSCyDgaQUOS8Uzg7ISwJXTqcilKnThygJEqbQhmUNGeW5EiUKM2eX-3y9qK2oXtuk2fTDobfm93loXvGhAAB3Iiz256rv1xvnhD-WQCsERTBYo3FNF33nfu8qu-vqD-q1FsLsabWNDjXaX0YK0ocagud5rXAj6Wbve-qJ2bbBc964YbNnV_6oPvor3rl2s65Dhd6QKKxDGBG_iBxq_gdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2043321095</pqid></control><display><type>article</type><title>Statistical analyses of Global U-Pb Database 2017</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Puetz, Stephen J. ; Ganade, Carlos E. ; Zimmermann, Udo ; Borchardt, Glenn</creator><creatorcontrib>Puetz, Stephen J. ; Ganade, Carlos E. ; Zimmermann, Udo ; Borchardt, Glenn</creatorcontrib><description>The method of obtaining zircon samples affects estimation of the global U-Pb age distribution. Researchers typically collect zircons via convenience sampling and cluster sampling. When using these techniques, weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates. Here, grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages. Preliminary tests involve two age models. Model-1 uses the most precise U-Pb ages as the best ages. Model-2 uses the 206Pb/238U age as the best age if it is less than a 1000 Ma cutoff, otherwise it uses the 207Pb/206Pb age as the best age. A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models. However, after applying acceptance criteria to include only the most precise analyses with minimal discordance, a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the 1000 Ma cutoff point. Because of the excessive rejection rate for Model-2, we select Model-1 as the preferred model. After eliminating all rejected samples, the remaining analyses use only Model-1 ages for five rock-type subsets of the database: igneous, meta-igneous, sedimentary, meta-sedimentary, and modern sediments. Next, time-series plots, cross-correlation analyses, and spectral analyses determine the degree of alignment among the time-series and their periodicity. For all rock types, the U-Pb age distributions are similar for ages older than 500 Ma, but align poorly for ages younger than 500 Ma. The similarities (&gt;500 Ma) and differences (&lt;500 Ma) highlight how reductionism from a detailed database enhances understanding of time-dependent sequences, such as erosion, detrital transport mechanisms,lithification, and metamorphism. Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of w91-Myr, w273-Myr, and w819-Myr among the various rock types.</description><identifier>ISSN: 1674-9871</identifier><identifier>EISSN: 2588-9192</identifier><identifier>DOI: 10.1016/j.gsf.2017.06.001</identifier><language>eng</language><publisher>Oxford: Elsevier B.V</publisher><subject>Acceptance criteria ; analysis;Periodicity;Sampling;Reductionism;Zircon ; Correlation analysis ; Erosion mechanisms ; Lead isotopes ; Metamorphism (geology) ; Periodic variations ; Periodicity ; Radiometric dating ; Reductionism ; Rejection rate ; Sampling ; Sediments ; Sequences ; series;Spectral ; Spectral analysis ; Spectrum analysis ; Statistical analysis ; Statistical methods ; Time ; Time dependence ; Time series ; Zircon</subject><ispartof>Di xue qian yuan., 2018, Vol.9 (1), p.121-145</ispartof><rights>2017 China University of Geosciences (Beijing) and Peking University</rights><rights>Copyright Elsevier Science Ltd. Jan 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-26aa3e6d6230a024f0e1d725916f3027e843b67c8cedc03d789a6b05abb93d133</citedby><cites>FETCH-LOGICAL-a451t-26aa3e6d6230a024f0e1d725916f3027e843b67c8cedc03d789a6b05abb93d133</cites><orcidid>0000-0002-8842-9754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71129X/71129X.jpg</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gsf.2017.06.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,4023,27922,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Puetz, Stephen J.</creatorcontrib><creatorcontrib>Ganade, Carlos E.</creatorcontrib><creatorcontrib>Zimmermann, Udo</creatorcontrib><creatorcontrib>Borchardt, Glenn</creatorcontrib><title>Statistical analyses of Global U-Pb Database 2017</title><title>Di xue qian yuan.</title><addtitle>Geoscience Frontiers</addtitle><description>The method of obtaining zircon samples affects estimation of the global U-Pb age distribution. Researchers typically collect zircons via convenience sampling and cluster sampling. When using these techniques, weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates. Here, grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages. Preliminary tests involve two age models. Model-1 uses the most precise U-Pb ages as the best ages. Model-2 uses the 206Pb/238U age as the best age if it is less than a 1000 Ma cutoff, otherwise it uses the 207Pb/206Pb age as the best age. A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models. However, after applying acceptance criteria to include only the most precise analyses with minimal discordance, a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the 1000 Ma cutoff point. Because of the excessive rejection rate for Model-2, we select Model-1 as the preferred model. After eliminating all rejected samples, the remaining analyses use only Model-1 ages for five rock-type subsets of the database: igneous, meta-igneous, sedimentary, meta-sedimentary, and modern sediments. Next, time-series plots, cross-correlation analyses, and spectral analyses determine the degree of alignment among the time-series and their periodicity. For all rock types, the U-Pb age distributions are similar for ages older than 500 Ma, but align poorly for ages younger than 500 Ma. The similarities (&gt;500 Ma) and differences (&lt;500 Ma) highlight how reductionism from a detailed database enhances understanding of time-dependent sequences, such as erosion, detrital transport mechanisms,lithification, and metamorphism. Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of w91-Myr, w273-Myr, and w819-Myr among the various rock types.</description><subject>Acceptance criteria</subject><subject>analysis;Periodicity;Sampling;Reductionism;Zircon</subject><subject>Correlation analysis</subject><subject>Erosion mechanisms</subject><subject>Lead isotopes</subject><subject>Metamorphism (geology)</subject><subject>Periodic variations</subject><subject>Periodicity</subject><subject>Radiometric dating</subject><subject>Reductionism</subject><subject>Rejection rate</subject><subject>Sampling</subject><subject>Sediments</subject><subject>Sequences</subject><subject>series;Spectral</subject><subject>Spectral analysis</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time</subject><subject>Time dependence</subject><subject>Time series</subject><subject>Zircon</subject><issn>1674-9871</issn><issn>2588-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kU9Lw0AQxRdRsNR-AG8BD54SZ3aT_YMnqVoFQUF7XibJpibUpM2mar-9W1rx5l4Wlt_bee8NY-cICQLKqyZZ-CrhgCoBmQDgERvxTOvYoOHHbIRSpbHRCk_ZxPsGwlFKKwUjhq8DDbUf6oKWEbW03Hrno66KZssuD0_z-CWPbmmgnLyLdiPO2ElFS-8mh3vM5vd3b9OH-Ol59ji9eYopzXCIuSQSTpaSCyDgaQUOS8Uzg7ISwJXTqcilKnThygJEqbQhmUNGeW5EiUKM2eX-3y9qK2oXtuk2fTDobfm93loXvGhAAB3Iiz256rv1xvnhD-WQCsERTBYo3FNF33nfu8qu-vqD-q1FsLsabWNDjXaX0YK0ocagud5rXAj6Wbve-qJ2bbBc964YbNnV_6oPvor3rl2s65Dhd6QKKxDGBG_iBxq_gdU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Puetz, Stephen J.</creator><creator>Ganade, Carlos E.</creator><creator>Zimmermann, Udo</creator><creator>Borchardt, Glenn</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><general>Progressive Science Institute, Honolulu,HI 96815, USA%Geological Survey of Brazil, Rio de Janeiro,Brazil%University of Stavanger,Department of Petroleum Engineering, Stavanger,Norway%Progressive Science Institute, Box 5335,Berkeley, CA 94705,USA</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0002-8842-9754</orcidid></search><sort><creationdate>2018</creationdate><title>Statistical analyses of Global U-Pb Database 2017</title><author>Puetz, Stephen J. ; Ganade, Carlos E. ; Zimmermann, Udo ; Borchardt, Glenn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-26aa3e6d6230a024f0e1d725916f3027e843b67c8cedc03d789a6b05abb93d133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceptance criteria</topic><topic>analysis;Periodicity;Sampling;Reductionism;Zircon</topic><topic>Correlation analysis</topic><topic>Erosion mechanisms</topic><topic>Lead isotopes</topic><topic>Metamorphism (geology)</topic><topic>Periodic variations</topic><topic>Periodicity</topic><topic>Radiometric dating</topic><topic>Reductionism</topic><topic>Rejection rate</topic><topic>Sampling</topic><topic>Sediments</topic><topic>Sequences</topic><topic>series;Spectral</topic><topic>Spectral analysis</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time</topic><topic>Time dependence</topic><topic>Time series</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Puetz, Stephen J.</creatorcontrib><creatorcontrib>Ganade, Carlos E.</creatorcontrib><creatorcontrib>Zimmermann, Udo</creatorcontrib><creatorcontrib>Borchardt, Glenn</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Di xue qian yuan.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Puetz, Stephen J.</au><au>Ganade, Carlos E.</au><au>Zimmermann, Udo</au><au>Borchardt, Glenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analyses of Global U-Pb Database 2017</atitle><jtitle>Di xue qian yuan.</jtitle><addtitle>Geoscience Frontiers</addtitle><date>2018</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>121</spage><epage>145</epage><pages>121-145</pages><issn>1674-9871</issn><eissn>2588-9192</eissn><abstract>The method of obtaining zircon samples affects estimation of the global U-Pb age distribution. Researchers typically collect zircons via convenience sampling and cluster sampling. When using these techniques, weight adjustments proportional to the areas of the sampled regions improve upon unweighted estimates. Here, grid-area and modern sediment methods are used to weight the samples from a new database of 418,967 U-Pb ages. Preliminary tests involve two age models. Model-1 uses the most precise U-Pb ages as the best ages. Model-2 uses the 206Pb/238U age as the best age if it is less than a 1000 Ma cutoff, otherwise it uses the 207Pb/206Pb age as the best age. A correlation analysis between the Model-1 and Model-2 ages indicates nearly identical distributions for both models. However, after applying acceptance criteria to include only the most precise analyses with minimal discordance, a histogram of the rejected samples shows excessive rejection of the Model-2 analyses around the 1000 Ma cutoff point. Because of the excessive rejection rate for Model-2, we select Model-1 as the preferred model. After eliminating all rejected samples, the remaining analyses use only Model-1 ages for five rock-type subsets of the database: igneous, meta-igneous, sedimentary, meta-sedimentary, and modern sediments. Next, time-series plots, cross-correlation analyses, and spectral analyses determine the degree of alignment among the time-series and their periodicity. For all rock types, the U-Pb age distributions are similar for ages older than 500 Ma, but align poorly for ages younger than 500 Ma. The similarities (&gt;500 Ma) and differences (&lt;500 Ma) highlight how reductionism from a detailed database enhances understanding of time-dependent sequences, such as erosion, detrital transport mechanisms,lithification, and metamorphism. Time-series analyses and spectral analyses of the age distributions predominantly indicate a synchronous period-tripling sequence of w91-Myr, w273-Myr, and w819-Myr among the various rock types.</abstract><cop>Oxford</cop><pub>Elsevier B.V</pub><doi>10.1016/j.gsf.2017.06.001</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-8842-9754</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-9871 |
ispartof | Di xue qian yuan., 2018, Vol.9 (1), p.121-145 |
issn | 1674-9871 2588-9192 |
language | eng |
recordid | cdi_wanfang_journals_dxqy_e201801008 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Acceptance criteria analysis Periodicity Sampling Reductionism Zircon Correlation analysis Erosion mechanisms Lead isotopes Metamorphism (geology) Periodic variations Periodicity Radiometric dating Reductionism Rejection rate Sampling Sediments Sequences series Spectral Spectral analysis Spectrum analysis Statistical analysis Statistical methods Time Time dependence Time series Zircon |
title | Statistical analyses of Global U-Pb Database 2017 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analyses%20of%20Global%20U-Pb%20Database%202017&rft.jtitle=Di%20xue%20qian%20yuan.&rft.au=Puetz,%20Stephen%20J.&rft.date=2018&rft.volume=9&rft.issue=1&rft.spage=121&rft.epage=145&rft.pages=121-145&rft.issn=1674-9871&rft.eissn=2588-9192&rft_id=info:doi/10.1016/j.gsf.2017.06.001&rft_dat=%3Cwanfang_jour_proqu%3Edxqy_e201801008%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2043321095&rft_id=info:pmid/&rft_cqvip_id=7000399332&rft_wanfj_id=dxqy_e201801008&rft_els_id=S1674987117301056&rfr_iscdi=true |