Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO
The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting E...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2024, Vol.41 (1), p.141-154 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 1 |
container_start_page | 141 |
container_title | Advances in atmospheric sciences |
container_volume | 41 |
creator | Wang, Tingyu Huang, Ping |
description | The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO. |
doi_str_mv | 10.1007/s00376-023-3001-1 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e202401010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202401010</wanfj_id><sourcerecordid>dqkxjz_e202401010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</originalsourceid><addsrcrecordid>eNp1kU1PAyEQhonRxFr9Ad5IPHlYHZbdpXs0tX4ktZpUz4Sy0NCuUGG3tf56adekJ8NhEnieyQwvQpcEbggAuw0AlBUJpDShACQhR6hHBgVJypzSY9SDNC8SklM4RWchLCJd0gHpoXrarpQ3zptmi53GAg-dXbu6bYyzosYT1fp9aTbOL_GLq1SN3Vp5fL-14tPI-Li_DNhY_OZVZWRj7BwPlW125puQRhuJR5Pp6zk60aIO6uKv9tHHw-h9-JSMXx-fh3fjRNIcmqQUcTYlFJOQgZZsVhQSmKxKIVlK6YxpWmgiYABpplncjzHBijKDLKd5KgvaR9dd342wWtg5X7jWx20Cr76W34sfrtKoAoknslcdu_Luq1WhOcDpoKQZpVn81D4iHSW9C8ErzVfefAq_5QT4LgDeBcAjy3cBcBKdtHNCZO1c-UPn_6VfnnyHNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893433402</pqid></control><display><type>article</type><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Tingyu ; Huang, Ping</creator><creatorcontrib>Wang, Tingyu ; Huang, Ping</creatorcontrib><description>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-023-3001-1</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Anomalies ; Artificial neural networks ; Atmospheric Sciences ; Climate ; Climate prediction ; Deep learning ; Dynamic models ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Geophysics/Geodesy ; Lead time ; Machine learning ; Meteorology ; Modelling ; Neural networks ; Neural stem cells ; Original Paper ; Sea surface ; Sea surface temperature ; Sea surface temperature anomalies ; Southern Oscillation ; Surface temperature ; Temperature anomalies</subject><ispartof>Advances in atmospheric sciences, 2024, Vol.41 (1), p.141-154</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</citedby><cites>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-023-3001-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-023-3001-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Tingyu</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate prediction</subject><subject>Deep learning</subject><subject>Dynamic models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Geophysics/Geodesy</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Original Paper</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Southern Oscillation</subject><subject>Surface temperature</subject><subject>Temperature anomalies</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PAyEQhonRxFr9Ad5IPHlYHZbdpXs0tX4ktZpUz4Sy0NCuUGG3tf56adekJ8NhEnieyQwvQpcEbggAuw0AlBUJpDShACQhR6hHBgVJypzSY9SDNC8SklM4RWchLCJd0gHpoXrarpQ3zptmi53GAg-dXbu6bYyzosYT1fp9aTbOL_GLq1SN3Vp5fL-14tPI-Li_DNhY_OZVZWRj7BwPlW125puQRhuJR5Pp6zk60aIO6uKv9tHHw-h9-JSMXx-fh3fjRNIcmqQUcTYlFJOQgZZsVhQSmKxKIVlK6YxpWmgiYABpplncjzHBijKDLKd5KgvaR9dd342wWtg5X7jWx20Cr76W34sfrtKoAoknslcdu_Luq1WhOcDpoKQZpVn81D4iHSW9C8ErzVfefAq_5QT4LgDeBcAjy3cBcBKdtHNCZO1c-UPn_6VfnnyHNw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Tingyu</creator><creator>Huang, Ping</creator><general>Science Press</general><general>Springer Nature B.V</general><general>State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><general>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science & Technology,Nanjing 210044,China</general><general>Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2024</creationdate><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><author>Wang, Tingyu ; Huang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate prediction</topic><topic>Deep learning</topic><topic>Dynamic models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Geophysics/Geodesy</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Original Paper</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Southern Oscillation</topic><topic>Surface temperature</topic><topic>Temperature anomalies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingyu</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingyu</au><au>Huang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>41</volume><issue>1</issue><spage>141</spage><epage>154</epage><pages>141-154</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-023-3001-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2024, Vol.41 (1), p.141-154 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e202401010 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Anomalies Artificial neural networks Atmospheric Sciences Climate Climate prediction Deep learning Dynamic models Earth and Environmental Science Earth Sciences El Nino El Nino phenomena El Nino-Southern Oscillation event Geophysics/Geodesy Lead time Machine learning Meteorology Modelling Neural networks Neural stem cells Original Paper Sea surface Sea surface temperature Sea surface temperature anomalies Southern Oscillation Surface temperature Temperature anomalies |
title | Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiority%20of%20a%20Convolutional%20Neural%20Network%20Model%20over%20Dynamical%20Models%20in%20Predicting%20Central%20Pacific%20ENSO&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Wang,%20Tingyu&rft.date=2024&rft.volume=41&rft.issue=1&rft.spage=141&rft.epage=154&rft.pages=141-154&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-023-3001-1&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e202401010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893433402&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202401010&rfr_iscdi=true |