Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO

The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting E...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2024, Vol.41 (1), p.141-154
Hauptverfasser: Wang, Tingyu, Huang, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 141
container_title Advances in atmospheric sciences
container_volume 41
creator Wang, Tingyu
Huang, Ping
description The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
doi_str_mv 10.1007/s00376-023-3001-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e202401010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202401010</wanfj_id><sourcerecordid>dqkxjz_e202401010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</originalsourceid><addsrcrecordid>eNp1kU1PAyEQhonRxFr9Ad5IPHlYHZbdpXs0tX4ktZpUz4Sy0NCuUGG3tf56adekJ8NhEnieyQwvQpcEbggAuw0AlBUJpDShACQhR6hHBgVJypzSY9SDNC8SklM4RWchLCJd0gHpoXrarpQ3zptmi53GAg-dXbu6bYyzosYT1fp9aTbOL_GLq1SN3Vp5fL-14tPI-Li_DNhY_OZVZWRj7BwPlW125puQRhuJR5Pp6zk60aIO6uKv9tHHw-h9-JSMXx-fh3fjRNIcmqQUcTYlFJOQgZZsVhQSmKxKIVlK6YxpWmgiYABpplncjzHBijKDLKd5KgvaR9dd342wWtg5X7jWx20Cr76W34sfrtKoAoknslcdu_Luq1WhOcDpoKQZpVn81D4iHSW9C8ErzVfefAq_5QT4LgDeBcAjy3cBcBKdtHNCZO1c-UPn_6VfnnyHNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893433402</pqid></control><display><type>article</type><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Tingyu ; Huang, Ping</creator><creatorcontrib>Wang, Tingyu ; Huang, Ping</creatorcontrib><description>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-023-3001-1</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Anomalies ; Artificial neural networks ; Atmospheric Sciences ; Climate ; Climate prediction ; Deep learning ; Dynamic models ; Earth and Environmental Science ; Earth Sciences ; El Nino ; El Nino phenomena ; El Nino-Southern Oscillation event ; Geophysics/Geodesy ; Lead time ; Machine learning ; Meteorology ; Modelling ; Neural networks ; Neural stem cells ; Original Paper ; Sea surface ; Sea surface temperature ; Sea surface temperature anomalies ; Southern Oscillation ; Surface temperature ; Temperature anomalies</subject><ispartof>Advances in atmospheric sciences, 2024, Vol.41 (1), p.141-154</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</citedby><cites>FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-023-3001-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-023-3001-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Tingyu</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</description><subject>Anomalies</subject><subject>Artificial neural networks</subject><subject>Atmospheric Sciences</subject><subject>Climate</subject><subject>Climate prediction</subject><subject>Deep learning</subject><subject>Dynamic models</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>El Nino-Southern Oscillation event</subject><subject>Geophysics/Geodesy</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Original Paper</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Sea surface temperature anomalies</subject><subject>Southern Oscillation</subject><subject>Surface temperature</subject><subject>Temperature anomalies</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1PAyEQhonRxFr9Ad5IPHlYHZbdpXs0tX4ktZpUz4Sy0NCuUGG3tf56adekJ8NhEnieyQwvQpcEbggAuw0AlBUJpDShACQhR6hHBgVJypzSY9SDNC8SklM4RWchLCJd0gHpoXrarpQ3zptmi53GAg-dXbu6bYyzosYT1fp9aTbOL_GLq1SN3Vp5fL-14tPI-Li_DNhY_OZVZWRj7BwPlW125puQRhuJR5Pp6zk60aIO6uKv9tHHw-h9-JSMXx-fh3fjRNIcmqQUcTYlFJOQgZZsVhQSmKxKIVlK6YxpWmgiYABpplncjzHBijKDLKd5KgvaR9dd342wWtg5X7jWx20Cr76W34sfrtKoAoknslcdu_Luq1WhOcDpoKQZpVn81D4iHSW9C8ErzVfefAq_5QT4LgDeBcAjy3cBcBKdtHNCZO1c-UPn_6VfnnyHNw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Tingyu</creator><creator>Huang, Ping</creator><general>Science Press</general><general>Springer Nature B.V</general><general>State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><general>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD),Nanjing University of Information Science &amp; Technology,Nanjing 210044,China</general><general>Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><general>University of Chinese Academy of Sciences,Beijing 100049,China%Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2024</creationdate><title>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</title><author>Wang, Tingyu ; Huang, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-9a938eae7c040fc7b66c07cd9ac7233b7f36f1a08024f753377a7694045352c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anomalies</topic><topic>Artificial neural networks</topic><topic>Atmospheric Sciences</topic><topic>Climate</topic><topic>Climate prediction</topic><topic>Deep learning</topic><topic>Dynamic models</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>El Nino-Southern Oscillation event</topic><topic>Geophysics/Geodesy</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Original Paper</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Sea surface temperature anomalies</topic><topic>Southern Oscillation</topic><topic>Surface temperature</topic><topic>Temperature anomalies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tingyu</creatorcontrib><creatorcontrib>Huang, Ping</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tingyu</au><au>Huang, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2024</date><risdate>2024</risdate><volume>41</volume><issue>1</issue><spage>141</spage><epage>154</epage><pages>141-154</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-023-3001-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2024, Vol.41 (1), p.141-154
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e202401010
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Anomalies
Artificial neural networks
Atmospheric Sciences
Climate
Climate prediction
Deep learning
Dynamic models
Earth and Environmental Science
Earth Sciences
El Nino
El Nino phenomena
El Nino-Southern Oscillation event
Geophysics/Geodesy
Lead time
Machine learning
Meteorology
Modelling
Neural networks
Neural stem cells
Original Paper
Sea surface
Sea surface temperature
Sea surface temperature anomalies
Southern Oscillation
Surface temperature
Temperature anomalies
title Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superiority%20of%20a%20Convolutional%20Neural%20Network%20Model%20over%20Dynamical%20Models%20in%20Predicting%20Central%20Pacific%20ENSO&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Wang,%20Tingyu&rft.date=2024&rft.volume=41&rft.issue=1&rft.spage=141&rft.epage=154&rft.pages=141-154&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-023-3001-1&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e202401010%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2893433402&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202401010&rfr_iscdi=true