Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)

We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and refl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2020-08, Vol.37 (8), p.873-892
Hauptverfasser: Zhang, Lu, Tian, Xiangjun, Zhang, Hongqin, Chen, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 8
container_start_page 873
container_title Advances in atmospheric sciences
container_volume 37
creator Zhang, Lu
Tian, Xiangjun
Zhang, Hongqin
Chen, Feng
description We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and reflectivity ( Z ) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of V r alone and Z alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of V r data were significantly greater that those of Z data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.
doi_str_mv 10.1007/s00376-020-9274-8
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e202008007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202008007</wanfj_id><sourcerecordid>dqkxjz_e202008007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</originalsourceid><addsrcrecordid>eNp1kclOHDEURS0EUprhA7KzlE16YfI81LRENASkBiSGbC2Xy27c1IRdRYA_4K_jTiH1CsuS5edzr_XeReg7hWMKkP0KADxLCTAgBcsEyXfQjOYpJUXC-S6aAUtSQhMO39B-COtIFzynM_Rx2fRKDwF3Fl-N9eBW3lX4enlHxOKP8qRUwVR40fV9bTy-VZXy-KYMxr-owXUtPgnBNa6eLnFfj43xTqsa37lmnOr_zZeqrayqa9eu8P1b_9hF-EK5p9Hhnwwomx-ivfgezNHneYAezs_uTy_I8ub35enJkmiewEC05WlGRVqmliqoikKw3HKbUUpVzoVRWUYZCJ1UvCyMELTkOo29VoXW3IqEH6D55PtXtVa1K7nuRt_GH2X1_PS6fpeGxSlCHqca2R8T2_vueTRh2MJMcEjzuCBSdKK070Lwxsreu0b5N0lBbtKRUzoy-spNOjKPGjZpQmTblfFb569F_wDh_ZFC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430688880</pqid></control><display><type>article</type><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</creator><creatorcontrib>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</creatorcontrib><description>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and reflectivity ( Z ) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of V r alone and Z alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of V r data were significantly greater that those of Z data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-020-9274-8</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric Sciences ; Computer simulation ; Data ; Data assimilation ; Data collection ; Doppler radar ; Doppler radar observation ; Doppler sonar ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Hurricanes ; Intervals ; Mathematical models ; Meteorology ; Numerical simulations ; Original Paper ; Precipitation ; Predictions ; Radar ; Radar data ; Radial velocity ; Reflectance ; Typhoons ; Weather forecasting</subject><ispartof>Advances in atmospheric sciences, 2020-08, Vol.37 (8), p.873-892</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</citedby><cites>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-020-9274-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-020-9274-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Tian, Xiangjun</creatorcontrib><creatorcontrib>Zhang, Hongqin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and reflectivity ( Z ) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of V r alone and Z alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of V r data were significantly greater that those of Z data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</description><subject>Atmospheric Sciences</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Doppler radar</subject><subject>Doppler radar observation</subject><subject>Doppler sonar</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Hurricanes</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Numerical simulations</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radial velocity</subject><subject>Reflectance</subject><subject>Typhoons</subject><subject>Weather forecasting</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kclOHDEURS0EUprhA7KzlE16YfI81LRENASkBiSGbC2Xy27c1IRdRYA_4K_jTiH1CsuS5edzr_XeReg7hWMKkP0KADxLCTAgBcsEyXfQjOYpJUXC-S6aAUtSQhMO39B-COtIFzynM_Rx2fRKDwF3Fl-N9eBW3lX4enlHxOKP8qRUwVR40fV9bTy-VZXy-KYMxr-owXUtPgnBNa6eLnFfj43xTqsa37lmnOr_zZeqrayqa9eu8P1b_9hF-EK5p9Hhnwwomx-ivfgezNHneYAezs_uTy_I8ub35enJkmiewEC05WlGRVqmliqoikKw3HKbUUpVzoVRWUYZCJ1UvCyMELTkOo29VoXW3IqEH6D55PtXtVa1K7nuRt_GH2X1_PS6fpeGxSlCHqca2R8T2_vueTRh2MJMcEjzuCBSdKK070Lwxsreu0b5N0lBbtKRUzoy-spNOjKPGjZpQmTblfFb569F_wDh_ZFC</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhang, Lu</creator><creator>Tian, Xiangjun</creator><creator>Zhang, Hongqin</creator><creator>Chen, Feng</creator><general>Science Press</general><general>Springer Nature B.V</general><general>International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China</general><general>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing210044, China%Zhejiang Institute of Meteorological Sciences, Hangzhou310008, China</general><general>University of Chinese Academy of Sciences, Beijing100049, China</general><general>University of Chinese Academy of Sciences, Beijing100049, China%International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200801</creationdate><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><author>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric Sciences</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Doppler radar</topic><topic>Doppler radar observation</topic><topic>Doppler sonar</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Hurricanes</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Numerical simulations</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radial velocity</topic><topic>Reflectance</topic><topic>Typhoons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Tian, Xiangjun</creatorcontrib><creatorcontrib>Zhang, Hongqin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lu</au><au>Tian, Xiangjun</au><au>Zhang, Hongqin</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>37</volume><issue>8</issue><spage>873</spage><epage>892</epage><pages>873-892</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and reflectivity ( Z ) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of V r alone and Z alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of V r data were significantly greater that those of Z data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-020-9274-8</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2020-08, Vol.37 (8), p.873-892
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e202008007
source SpringerLink Journals; Alma/SFX Local Collection
subjects Atmospheric Sciences
Computer simulation
Data
Data assimilation
Data collection
Doppler radar
Doppler radar observation
Doppler sonar
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Hurricanes
Intervals
Mathematical models
Meteorology
Numerical simulations
Original Paper
Precipitation
Predictions
Radar
Radar data
Radial velocity
Reflectance
Typhoons
Weather forecasting
title Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Multigrid%20NLS-4DVar-based%20Doppler%20Radar%20Observation%20Assimilation%20on%20Numerical%20Simulations%20of%20Landfalling%20Typhoon%20Haikui%20(2012)&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhang,%20Lu&rft.date=2020-08-01&rft.volume=37&rft.issue=8&rft.spage=873&rft.epage=892&rft.pages=873-892&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-020-9274-8&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e202008007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430688880&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202008007&rfr_iscdi=true