Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)
We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity ( V r ) and refl...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2020-08, Vol.37 (8), p.873-892 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 892 |
---|---|
container_issue | 8 |
container_start_page | 873 |
container_title | Advances in atmospheric sciences |
container_volume | 37 |
creator | Zhang, Lu Tian, Xiangjun Zhang, Hongqin Chen, Feng |
description | We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity (
V
r
) and reflectivity (
Z
) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of
V
r
alone and
Z
alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of
V
r
data were significantly greater that those of
Z
data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals. |
doi_str_mv | 10.1007/s00376-020-9274-8 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e202008007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202008007</wanfj_id><sourcerecordid>dqkxjz_e202008007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</originalsourceid><addsrcrecordid>eNp1kclOHDEURS0EUprhA7KzlE16YfI81LRENASkBiSGbC2Xy27c1IRdRYA_4K_jTiH1CsuS5edzr_XeReg7hWMKkP0KADxLCTAgBcsEyXfQjOYpJUXC-S6aAUtSQhMO39B-COtIFzynM_Rx2fRKDwF3Fl-N9eBW3lX4enlHxOKP8qRUwVR40fV9bTy-VZXy-KYMxr-owXUtPgnBNa6eLnFfj43xTqsa37lmnOr_zZeqrayqa9eu8P1b_9hF-EK5p9Hhnwwomx-ivfgezNHneYAezs_uTy_I8ub35enJkmiewEC05WlGRVqmliqoikKw3HKbUUpVzoVRWUYZCJ1UvCyMELTkOo29VoXW3IqEH6D55PtXtVa1K7nuRt_GH2X1_PS6fpeGxSlCHqca2R8T2_vueTRh2MJMcEjzuCBSdKK070Lwxsreu0b5N0lBbtKRUzoy-spNOjKPGjZpQmTblfFb569F_wDh_ZFC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430688880</pqid></control><display><type>article</type><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</creator><creatorcontrib>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</creatorcontrib><description>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity (
V
r
) and reflectivity (
Z
) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of
V
r
alone and
Z
alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of
V
r
data were significantly greater that those of
Z
data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-020-9274-8</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric Sciences ; Computer simulation ; Data ; Data assimilation ; Data collection ; Doppler radar ; Doppler radar observation ; Doppler sonar ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Hurricanes ; Intervals ; Mathematical models ; Meteorology ; Numerical simulations ; Original Paper ; Precipitation ; Predictions ; Radar ; Radar data ; Radial velocity ; Reflectance ; Typhoons ; Weather forecasting</subject><ispartof>Advances in atmospheric sciences, 2020-08, Vol.37 (8), p.873-892</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</citedby><cites>FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-020-9274-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-020-9274-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Tian, Xiangjun</creatorcontrib><creatorcontrib>Zhang, Hongqin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity (
V
r
) and reflectivity (
Z
) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of
V
r
alone and
Z
alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of
V
r
data were significantly greater that those of
Z
data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</description><subject>Atmospheric Sciences</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Doppler radar</subject><subject>Doppler radar observation</subject><subject>Doppler sonar</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Hurricanes</subject><subject>Intervals</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Numerical simulations</subject><subject>Original Paper</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>Radar</subject><subject>Radar data</subject><subject>Radial velocity</subject><subject>Reflectance</subject><subject>Typhoons</subject><subject>Weather forecasting</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kclOHDEURS0EUprhA7KzlE16YfI81LRENASkBiSGbC2Xy27c1IRdRYA_4K_jTiH1CsuS5edzr_XeReg7hWMKkP0KADxLCTAgBcsEyXfQjOYpJUXC-S6aAUtSQhMO39B-COtIFzynM_Rx2fRKDwF3Fl-N9eBW3lX4enlHxOKP8qRUwVR40fV9bTy-VZXy-KYMxr-owXUtPgnBNa6eLnFfj43xTqsa37lmnOr_zZeqrayqa9eu8P1b_9hF-EK5p9Hhnwwomx-ivfgezNHneYAezs_uTy_I8ub35enJkmiewEC05WlGRVqmliqoikKw3HKbUUpVzoVRWUYZCJ1UvCyMELTkOo29VoXW3IqEH6D55PtXtVa1K7nuRt_GH2X1_PS6fpeGxSlCHqca2R8T2_vueTRh2MJMcEjzuCBSdKK070Lwxsreu0b5N0lBbtKRUzoy-spNOjKPGjZpQmTblfFb569F_wDh_ZFC</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Zhang, Lu</creator><creator>Tian, Xiangjun</creator><creator>Zhang, Hongqin</creator><creator>Chen, Feng</creator><general>Science Press</general><general>Springer Nature B.V</general><general>International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China</general><general>Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing210044, China%Zhejiang Institute of Meteorological Sciences, Hangzhou310008, China</general><general>University of Chinese Academy of Sciences, Beijing100049, China</general><general>University of Chinese Academy of Sciences, Beijing100049, China%International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing100029, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20200801</creationdate><title>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</title><author>Zhang, Lu ; Tian, Xiangjun ; Zhang, Hongqin ; Chen, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cf367146b6f1a0d99428f3f7111a834ea771204c5d3b9e441b3c6938d9cc3f453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atmospheric Sciences</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Doppler radar</topic><topic>Doppler radar observation</topic><topic>Doppler sonar</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Hurricanes</topic><topic>Intervals</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Numerical simulations</topic><topic>Original Paper</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>Radar</topic><topic>Radar data</topic><topic>Radial velocity</topic><topic>Reflectance</topic><topic>Typhoons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lu</creatorcontrib><creatorcontrib>Tian, Xiangjun</creatorcontrib><creatorcontrib>Zhang, Hongqin</creatorcontrib><creatorcontrib>Chen, Feng</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lu</au><au>Tian, Xiangjun</au><au>Zhang, Hongqin</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012)</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>37</volume><issue>8</issue><spage>873</spage><epage>892</epage><pages>873-892</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>We applied the multigrid nonlinear least-squares four-dimensional variational assimilation (MG-NLS4DVar) method in data assimilation and prediction experiments for Typhoon Haikui (2012) using the Weather Research and Forecasting (WRF) model. Observation data included radial velocity (
V
r
) and reflectivity (
Z
) data from a single Doppler radar, quality controlled prior to assimilation. Typhoon prediction results were evaluated and compared between the NLS-4DVar and MG-NLS4DVar methods. Compared with a forecast that began with NCEP analysis data, our radar data assimilation results were clearly improved in terms of structure, intensity, track, and precipitation prediction for Typhoon Haikui (2012). The results showed that the assimilation accuracy of the NLS-4DVar method was similar to that of the MG-NLS4DVar method, but that the latter was more efficient. The assimilation of
V
r
alone and
Z
alone each improved predictions of typhoon intensity, track, and precipitation; however, the impacts of
V
r
data were significantly greater that those of
Z
data. Assimilation window-length sensitivity experiments showed that a 6-h assimilation window with 30-min assimilation intervals produced slightly better results than either a 3-h assimilation window with 15-min assimilation intervals or a 1-h assimilation window with 6-min assimilation intervals.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-020-9274-8</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2020-08, Vol.37 (8), p.873-892 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e202008007 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Atmospheric Sciences Computer simulation Data Data assimilation Data collection Doppler radar Doppler radar observation Doppler sonar Earth and Environmental Science Earth Sciences Geophysics/Geodesy Hurricanes Intervals Mathematical models Meteorology Numerical simulations Original Paper Precipitation Predictions Radar Radar data Radial velocity Reflectance Typhoons Weather forecasting |
title | Impacts of Multigrid NLS-4DVar-based Doppler Radar Observation Assimilation on Numerical Simulations of Landfalling Typhoon Haikui (2012) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Multigrid%20NLS-4DVar-based%20Doppler%20Radar%20Observation%20Assimilation%20on%20Numerical%20Simulations%20of%20Landfalling%20Typhoon%20Haikui%20(2012)&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhang,%20Lu&rft.date=2020-08-01&rft.volume=37&rft.issue=8&rft.spage=873&rft.epage=892&rft.pages=873-892&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-020-9274-8&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e202008007%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430688880&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202008007&rfr_iscdi=true |