The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter

A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2019-12, Vol.36 (12), p.1308-1326
Hauptverfasser: Zhu, Kefeng, Xue, Ming, Pan, Yujie, Hu, Ming, Benjamin, Stanley G., Weygandt, Stephen S., Lin, Haidao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1326
container_issue 12
container_start_page 1308
container_title Advances in atmospheric sciences
container_volume 36
creator Zhu, Kefeng
Xue, Ming
Pan, Yujie
Hu, Ming
Benjamin, Stanley G.
Weygandt, Stephen S.
Lin, Haidao
description A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.
doi_str_mv 10.1007/s00376-019-9011-3
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201912002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e201912002</wanfj_id><sourcerecordid>dqkxjz_e201912002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEkvhAbhZ4sTB4LGxkxyr0i0rKiF1u2fLccZbL46ztV2V5Sl4ZFwFqSdOc_m-XzPzN817YJ-AsfZzZky0ijLoac8AqHjRrKBTQHspxMtmxbhUFKRgr5s3OR8q3YsOVs2f2zskm-lobCGzI1tTMARfkNyY0ZtokXw1xZDznP3kgyl-juTRlzsfiSHrhPcPGEs4kd1xrOpIbnBfERPIek5oTS5ke8oFJ7LLPu6rc7Xd0MHkil7GjNMQkHw3YTKRrH0omN42r5wJGd_9m2fNbn15e_GNXv-42lycX1MrJCt0kD32LW8tqIFbEK6DL4PETrSt5daKjrWoOoaud60cxmF0AANzarRSMlRGnDUfl9xHE52Je32YH1JdPOvx_uevw2-NvD4TOGO8sh8W9pjmenAuzzAXIECpTkKlYKFsmnNO6PQx-cmkkwamn0rSS0m65uqnkrSoDl-cXNm4x_Sc_H_pL9Q2lSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313166851</pqid></control><display><type>article</type><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</creator><creatorcontrib>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</creatorcontrib><description>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-019-9011-3</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Algorithms ; Atmospheric Sciences ; Bias ; Data ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Interpolation ; Kalman filters ; Meteorological satellites ; Meteorology ; Original Paper ; Polar orbiting satellites ; Precipitation forecasting ; Procedures ; Radiance ; Relative humidity ; Satellites ; Statistical analysis ; Upgrading ; Weather forecasting</subject><ispartof>Advances in atmospheric sciences, 2019-12, Vol.36 (12), p.1308-1326</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</citedby><cites>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-019-9011-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-019-9011-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Kefeng</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Pan, Yujie</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Benjamin, Stanley G.</creatorcontrib><creatorcontrib>Weygandt, Stephen S.</creatorcontrib><creatorcontrib>Lin, Haidao</creatorcontrib><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Bias</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Interpolation</subject><subject>Kalman filters</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Original Paper</subject><subject>Polar orbiting satellites</subject><subject>Precipitation forecasting</subject><subject>Procedures</subject><subject>Radiance</subject><subject>Relative humidity</subject><subject>Satellites</subject><subject>Statistical analysis</subject><subject>Upgrading</subject><subject>Weather forecasting</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhiMEEkvhAbhZ4sTB4LGxkxyr0i0rKiF1u2fLccZbL46ztV2V5Sl4ZFwFqSdOc_m-XzPzN817YJ-AsfZzZky0ijLoac8AqHjRrKBTQHspxMtmxbhUFKRgr5s3OR8q3YsOVs2f2zskm-lobCGzI1tTMARfkNyY0ZtokXw1xZDznP3kgyl-juTRlzsfiSHrhPcPGEs4kd1xrOpIbnBfERPIek5oTS5ke8oFJ7LLPu6rc7Xd0MHkil7GjNMQkHw3YTKRrH0omN42r5wJGd_9m2fNbn15e_GNXv-42lycX1MrJCt0kD32LW8tqIFbEK6DL4PETrSt5daKjrWoOoaud60cxmF0AANzarRSMlRGnDUfl9xHE52Je32YH1JdPOvx_uevw2-NvD4TOGO8sh8W9pjmenAuzzAXIECpTkKlYKFsmnNO6PQx-cmkkwamn0rSS0m65uqnkrSoDl-cXNm4x_Sc_H_pL9Q2lSU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhu, Kefeng</creator><creator>Xue, Ming</creator><creator>Pan, Yujie</creator><creator>Hu, Ming</creator><creator>Benjamin, Stanley G.</creator><creator>Weygandt, Stephen S.</creator><creator>Lin, Haidao</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO 80309, USA%NOAA Earth System Research Laboratory, Boulder, CO 80305, USA</general><general>Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China</general><general>Center for Analysis and Prediction of Storms, University of Oklahoma, Norman Oklahoma 73072, USA%Nanjing University of Information Science and Technology, Nanjing 210094, China%NOAA Earth System Research Laboratory, Boulder, CO 80305, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20191201</creationdate><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><author>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Bias</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Interpolation</topic><topic>Kalman filters</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Original Paper</topic><topic>Polar orbiting satellites</topic><topic>Precipitation forecasting</topic><topic>Procedures</topic><topic>Radiance</topic><topic>Relative humidity</topic><topic>Satellites</topic><topic>Statistical analysis</topic><topic>Upgrading</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kefeng</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Pan, Yujie</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Benjamin, Stanley G.</creatorcontrib><creatorcontrib>Weygandt, Stephen S.</creatorcontrib><creatorcontrib>Lin, Haidao</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kefeng</au><au>Xue, Ming</au><au>Pan, Yujie</au><au>Hu, Ming</au><au>Benjamin, Stanley G.</au><au>Weygandt, Stephen S.</au><au>Lin, Haidao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>36</volume><issue>12</issue><spage>1308</spage><epage>1326</epage><pages>1308-1326</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-019-9011-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2019-12, Vol.36 (12), p.1308-1326
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e201912002
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Atmospheric Sciences
Bias
Data
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Interpolation
Kalman filters
Meteorological satellites
Meteorology
Original Paper
Polar orbiting satellites
Precipitation forecasting
Procedures
Radiance
Relative humidity
Satellites
Statistical analysis
Upgrading
Weather forecasting
title The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Satellite%20Radiance%20Data%20Assimilation%20within%20a%20Frequently%20Updated%20Regional%20Forecast%20System%20Using%20a%20GSI-based%20Ensemble%20Kalman%20Filter&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhu,%20Kefeng&rft.date=2019-12-01&rft.volume=36&rft.issue=12&rft.spage=1308&rft.epage=1326&rft.pages=1308-1326&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-019-9011-3&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201912002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313166851&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e201912002&rfr_iscdi=true