The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter
A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2019-12, Vol.36 (12), p.1308-1326 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1326 |
---|---|
container_issue | 12 |
container_start_page | 1308 |
container_title | Advances in atmospheric sciences |
container_volume | 36 |
creator | Zhu, Kefeng Xue, Ming Pan, Yujie Hu, Ming Benjamin, Stanley G. Weygandt, Stephen S. Lin, Haidao |
description | A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours. |
doi_str_mv | 10.1007/s00376-019-9011-3 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201912002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e201912002</wanfj_id><sourcerecordid>dqkxjz_e201912002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEEkvhAbhZ4sTB4LGxkxyr0i0rKiF1u2fLccZbL46ztV2V5Sl4ZFwFqSdOc_m-XzPzN817YJ-AsfZzZky0ijLoac8AqHjRrKBTQHspxMtmxbhUFKRgr5s3OR8q3YsOVs2f2zskm-lobCGzI1tTMARfkNyY0ZtokXw1xZDznP3kgyl-juTRlzsfiSHrhPcPGEs4kd1xrOpIbnBfERPIek5oTS5ke8oFJ7LLPu6rc7Xd0MHkil7GjNMQkHw3YTKRrH0omN42r5wJGd_9m2fNbn15e_GNXv-42lycX1MrJCt0kD32LW8tqIFbEK6DL4PETrSt5daKjrWoOoaud60cxmF0AANzarRSMlRGnDUfl9xHE52Je32YH1JdPOvx_uevw2-NvD4TOGO8sh8W9pjmenAuzzAXIECpTkKlYKFsmnNO6PQx-cmkkwamn0rSS0m65uqnkrSoDl-cXNm4x_Sc_H_pL9Q2lSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313166851</pqid></control><display><type>article</type><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</creator><creatorcontrib>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</creatorcontrib><description>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-019-9011-3</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Algorithms ; Atmospheric Sciences ; Bias ; Data ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Interpolation ; Kalman filters ; Meteorological satellites ; Meteorology ; Original Paper ; Polar orbiting satellites ; Precipitation forecasting ; Procedures ; Radiance ; Relative humidity ; Satellites ; Statistical analysis ; Upgrading ; Weather forecasting</subject><ispartof>Advances in atmospheric sciences, 2019-12, Vol.36 (12), p.1308-1326</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</citedby><cites>FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-019-9011-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-019-9011-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Kefeng</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Pan, Yujie</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Benjamin, Stanley G.</creatorcontrib><creatorcontrib>Weygandt, Stephen S.</creatorcontrib><creatorcontrib>Lin, Haidao</creatorcontrib><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Bias</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Interpolation</subject><subject>Kalman filters</subject><subject>Meteorological satellites</subject><subject>Meteorology</subject><subject>Original Paper</subject><subject>Polar orbiting satellites</subject><subject>Precipitation forecasting</subject><subject>Procedures</subject><subject>Radiance</subject><subject>Relative humidity</subject><subject>Satellites</subject><subject>Statistical analysis</subject><subject>Upgrading</subject><subject>Weather forecasting</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFu1DAQhiMEEkvhAbhZ4sTB4LGxkxyr0i0rKiF1u2fLccZbL46ztV2V5Sl4ZFwFqSdOc_m-XzPzN817YJ-AsfZzZky0ijLoac8AqHjRrKBTQHspxMtmxbhUFKRgr5s3OR8q3YsOVs2f2zskm-lobCGzI1tTMARfkNyY0ZtokXw1xZDznP3kgyl-juTRlzsfiSHrhPcPGEs4kd1xrOpIbnBfERPIek5oTS5ke8oFJ7LLPu6rc7Xd0MHkil7GjNMQkHw3YTKRrH0omN42r5wJGd_9m2fNbn15e_GNXv-42lycX1MrJCt0kD32LW8tqIFbEK6DL4PETrSt5daKjrWoOoaud60cxmF0AANzarRSMlRGnDUfl9xHE52Je32YH1JdPOvx_uevw2-NvD4TOGO8sh8W9pjmenAuzzAXIECpTkKlYKFsmnNO6PQx-cmkkwamn0rSS0m65uqnkrSoDl-cXNm4x_Sc_H_pL9Q2lSU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Zhu, Kefeng</creator><creator>Xue, Ming</creator><creator>Pan, Yujie</creator><creator>Hu, Ming</creator><creator>Benjamin, Stanley G.</creator><creator>Weygandt, Stephen S.</creator><creator>Lin, Haidao</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO 80309, USA%NOAA Earth System Research Laboratory, Boulder, CO 80305, USA</general><general>Key Laboratory of Mesoscale Severe Weather/Ministry of Education and School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China</general><general>Center for Analysis and Prediction of Storms, University of Oklahoma, Norman Oklahoma 73072, USA%Nanjing University of Information Science and Technology, Nanjing 210094, China%NOAA Earth System Research Laboratory, Boulder, CO 80305, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20191201</creationdate><title>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</title><author>Zhu, Kefeng ; Xue, Ming ; Pan, Yujie ; Hu, Ming ; Benjamin, Stanley G. ; Weygandt, Stephen S. ; Lin, Haidao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-b59e9727c16b2c13f814b5e8377c2cc3807e680ef9f75bdbdf11b0f6dc550e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Bias</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Interpolation</topic><topic>Kalman filters</topic><topic>Meteorological satellites</topic><topic>Meteorology</topic><topic>Original Paper</topic><topic>Polar orbiting satellites</topic><topic>Precipitation forecasting</topic><topic>Procedures</topic><topic>Radiance</topic><topic>Relative humidity</topic><topic>Satellites</topic><topic>Statistical analysis</topic><topic>Upgrading</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Kefeng</creatorcontrib><creatorcontrib>Xue, Ming</creatorcontrib><creatorcontrib>Pan, Yujie</creatorcontrib><creatorcontrib>Hu, Ming</creatorcontrib><creatorcontrib>Benjamin, Stanley G.</creatorcontrib><creatorcontrib>Weygandt, Stephen S.</creatorcontrib><creatorcontrib>Lin, Haidao</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Kefeng</au><au>Xue, Ming</au><au>Pan, Yujie</au><au>Hu, Ming</au><au>Benjamin, Stanley G.</au><au>Weygandt, Stephen S.</au><au>Lin, Haidao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>36</volume><issue>12</issue><spage>1308</spage><epage>1326</epage><pages>1308-1326</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-hourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements (RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-019-9011-3</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2019-12, Vol.36 (12), p.1308-1326 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e201912002 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Atmospheric Sciences Bias Data Data assimilation Data collection Earth and Environmental Science Earth Sciences Geophysics/Geodesy Interpolation Kalman filters Meteorological satellites Meteorology Original Paper Polar orbiting satellites Precipitation forecasting Procedures Radiance Relative humidity Satellites Statistical analysis Upgrading Weather forecasting |
title | The Impact of Satellite Radiance Data Assimilation within a Frequently Updated Regional Forecast System Using a GSI-based Ensemble Kalman Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A28%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Impact%20of%20Satellite%20Radiance%20Data%20Assimilation%20within%20a%20Frequently%20Updated%20Regional%20Forecast%20System%20Using%20a%20GSI-based%20Ensemble%20Kalman%20Filter&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Zhu,%20Kefeng&rft.date=2019-12-01&rft.volume=36&rft.issue=12&rft.spage=1308&rft.epage=1326&rft.pages=1308-1326&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-019-9011-3&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201912002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313166851&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e201912002&rfr_iscdi=true |