Recent Progress in Numerical Atmospheric Modeling in China

This review summarizes the scientific and technical progress in atmospheric modeling in China since 2011, including the dynamical core, model physics, data assimilation, ensemble forecasting, and model evaluation strategies. In terms of the dynamical core, important efforts have been made in the imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2019-09, Vol.36 (9), p.938-960
Hauptverfasser: Yu, Rucong, Zhang, Yi, Wang, Jianjie, Li, Jian, Chen, Haoming, Gong, Jiandong, Chen, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 9
container_start_page 938
container_title Advances in atmospheric sciences
container_volume 36
creator Yu, Rucong
Zhang, Yi
Wang, Jianjie
Li, Jian
Chen, Haoming
Gong, Jiandong
Chen, Jing
description This review summarizes the scientific and technical progress in atmospheric modeling in China since 2011, including the dynamical core, model physics, data assimilation, ensemble forecasting, and model evaluation strategies. In terms of the dynamical core, important efforts have been made in the improvement of the existing model formulations and in exploring new modeling approaches that can better adapt to massively parallel computers and global multiscale modeling. With regard to model physics, various achievements in physical representations have been made, especially a trend toward scale-aware parameterization for accommodating the increase of model resolution. In the field of data assimilation, a 4D-Var system has been developed and is operationally used by the National Meteorological Center of China, and its performance is promising. Furthermore, ensemble forecasting has played a more important role in operational forecast systems and progressed in many fundamental techniques. Model evaluation strategies, including key performance metrics and standardized experimental protocols, have been proposed and widely applied to better understand the strengths and weaknesses of the systems, offering key routes for model improvement. The paper concludes with a concise summary of the status quo and a brief outlook in terms of future development.
doi_str_mv 10.1007/s00376-019-8203-1
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201909005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e201909005</wanfj_id><sourcerecordid>dqkxjz_e201909005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-2600d36656a55f26d64a21e9811397ebad0b3ce9a74a5cbc5c6c5b06b8d4101a3</originalsourceid><addsrcrecordid>eNp10M1LwzAYBvAgCs7pH-Ct4MlD9H2TJWm9jeEXzA9EzyFN065zS2fS4cdfb0uFnTyFwO95Qh5CThEuEEBdRgCuJAXMaMqAU9wjI0wl0kxwvk9GwISkKDgckqMYl53OeIojcvXirPNt8hyaKrgYk9onj9u1C7U1q2Tarpu4WfS35KEp3Kr2VS9mi9qbY3JQmlV0J3_nmLzdXL_O7uj86fZ-Np1TywW0lEmAgksppBGiZLKQE8PQZSkiz5TLTQE5ty4zamKEza2w0oocZJ4WEwQ0fEzOh95P40vjK71stsF3L-ri4_1r-aMd674NGYDo7NlgN6H52LrY7jBjgikFSvQKB2VDE2Nwpd6Eem3Ct0bQ_Zx6mFN3vbqfU2OXYUMmdtZXLuya_w_9AsPMdcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2252770755</pqid></control><display><type>article</type><title>Recent Progress in Numerical Atmospheric Modeling in China</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yu, Rucong ; Zhang, Yi ; Wang, Jianjie ; Li, Jian ; Chen, Haoming ; Gong, Jiandong ; Chen, Jing</creator><creatorcontrib>Yu, Rucong ; Zhang, Yi ; Wang, Jianjie ; Li, Jian ; Chen, Haoming ; Gong, Jiandong ; Chen, Jing</creatorcontrib><description>This review summarizes the scientific and technical progress in atmospheric modeling in China since 2011, including the dynamical core, model physics, data assimilation, ensemble forecasting, and model evaluation strategies. In terms of the dynamical core, important efforts have been made in the improvement of the existing model formulations and in exploring new modeling approaches that can better adapt to massively parallel computers and global multiscale modeling. With regard to model physics, various achievements in physical representations have been made, especially a trend toward scale-aware parameterization for accommodating the increase of model resolution. In the field of data assimilation, a 4D-Var system has been developed and is operationally used by the National Meteorological Center of China, and its performance is promising. Furthermore, ensemble forecasting has played a more important role in operational forecast systems and progressed in many fundamental techniques. Model evaluation strategies, including key performance metrics and standardized experimental protocols, have been proposed and widely applied to better understand the strengths and weaknesses of the systems, offering key routes for model improvement. The paper concludes with a concise summary of the status quo and a brief outlook in terms of future development.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-019-8203-1</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric models ; Atmospheric Sciences ; Computer simulation ; Computers ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Ensemble forecasting ; Evaluation ; Forecasting ; Formulations ; Geophysics/Geodesy ; Mathematical models ; Meteorology ; Modelling ; National Reports to the IUGG by Chinese National Committee for IAMAS ; Parallel computers ; Parameterization ; Performance measurement ; Physics ; Review</subject><ispartof>Advances in atmospheric sciences, 2019-09, Vol.36 (9), p.938-960</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-2600d36656a55f26d64a21e9811397ebad0b3ce9a74a5cbc5c6c5b06b8d4101a3</citedby><cites>FETCH-LOGICAL-c350t-2600d36656a55f26d64a21e9811397ebad0b3ce9a74a5cbc5c6c5b06b8d4101a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-019-8203-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-019-8203-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yu, Rucong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Jianjie</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Chen, Haoming</creatorcontrib><creatorcontrib>Gong, Jiandong</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><title>Recent Progress in Numerical Atmospheric Modeling in China</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>This review summarizes the scientific and technical progress in atmospheric modeling in China since 2011, including the dynamical core, model physics, data assimilation, ensemble forecasting, and model evaluation strategies. In terms of the dynamical core, important efforts have been made in the improvement of the existing model formulations and in exploring new modeling approaches that can better adapt to massively parallel computers and global multiscale modeling. With regard to model physics, various achievements in physical representations have been made, especially a trend toward scale-aware parameterization for accommodating the increase of model resolution. In the field of data assimilation, a 4D-Var system has been developed and is operationally used by the National Meteorological Center of China, and its performance is promising. Furthermore, ensemble forecasting has played a more important role in operational forecast systems and progressed in many fundamental techniques. Model evaluation strategies, including key performance metrics and standardized experimental protocols, have been proposed and widely applied to better understand the strengths and weaknesses of the systems, offering key routes for model improvement. The paper concludes with a concise summary of the status quo and a brief outlook in terms of future development.</description><subject>Atmospheric models</subject><subject>Atmospheric Sciences</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ensemble forecasting</subject><subject>Evaluation</subject><subject>Forecasting</subject><subject>Formulations</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>National Reports to the IUGG by Chinese National Committee for IAMAS</subject><subject>Parallel computers</subject><subject>Parameterization</subject><subject>Performance measurement</subject><subject>Physics</subject><subject>Review</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1LwzAYBvAgCs7pH-Ct4MlD9H2TJWm9jeEXzA9EzyFN065zS2fS4cdfb0uFnTyFwO95Qh5CThEuEEBdRgCuJAXMaMqAU9wjI0wl0kxwvk9GwISkKDgckqMYl53OeIojcvXirPNt8hyaKrgYk9onj9u1C7U1q2Tarpu4WfS35KEp3Kr2VS9mi9qbY3JQmlV0J3_nmLzdXL_O7uj86fZ-Np1TywW0lEmAgksppBGiZLKQE8PQZSkiz5TLTQE5ty4zamKEza2w0oocZJ4WEwQ0fEzOh95P40vjK71stsF3L-ri4_1r-aMd674NGYDo7NlgN6H52LrY7jBjgikFSvQKB2VDE2Nwpd6Eem3Ct0bQ_Zx6mFN3vbqfU2OXYUMmdtZXLuya_w_9AsPMdcM</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Yu, Rucong</creator><creator>Zhang, Yi</creator><creator>Wang, Jianjie</creator><creator>Li, Jian</creator><creator>Chen, Haoming</creator><creator>Gong, Jiandong</creator><creator>Chen, Jing</creator><general>Science Press</general><general>Springer Nature B.V</general><general>State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,China Meteorological Administration, Beijing 100081, China%National Meteorological Center, China Meteorological Administration, Beijing 100081, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190901</creationdate><title>Recent Progress in Numerical Atmospheric Modeling in China</title><author>Yu, Rucong ; Zhang, Yi ; Wang, Jianjie ; Li, Jian ; Chen, Haoming ; Gong, Jiandong ; Chen, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-2600d36656a55f26d64a21e9811397ebad0b3ce9a74a5cbc5c6c5b06b8d4101a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atmospheric models</topic><topic>Atmospheric Sciences</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ensemble forecasting</topic><topic>Evaluation</topic><topic>Forecasting</topic><topic>Formulations</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>National Reports to the IUGG by Chinese National Committee for IAMAS</topic><topic>Parallel computers</topic><topic>Parameterization</topic><topic>Performance measurement</topic><topic>Physics</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Rucong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Wang, Jianjie</creatorcontrib><creatorcontrib>Li, Jian</creatorcontrib><creatorcontrib>Chen, Haoming</creatorcontrib><creatorcontrib>Gong, Jiandong</creatorcontrib><creatorcontrib>Chen, Jing</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Rucong</au><au>Zhang, Yi</au><au>Wang, Jianjie</au><au>Li, Jian</au><au>Chen, Haoming</au><au>Gong, Jiandong</au><au>Chen, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Progress in Numerical Atmospheric Modeling in China</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>36</volume><issue>9</issue><spage>938</spage><epage>960</epage><pages>938-960</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>This review summarizes the scientific and technical progress in atmospheric modeling in China since 2011, including the dynamical core, model physics, data assimilation, ensemble forecasting, and model evaluation strategies. In terms of the dynamical core, important efforts have been made in the improvement of the existing model formulations and in exploring new modeling approaches that can better adapt to massively parallel computers and global multiscale modeling. With regard to model physics, various achievements in physical representations have been made, especially a trend toward scale-aware parameterization for accommodating the increase of model resolution. In the field of data assimilation, a 4D-Var system has been developed and is operationally used by the National Meteorological Center of China, and its performance is promising. Furthermore, ensemble forecasting has played a more important role in operational forecast systems and progressed in many fundamental techniques. Model evaluation strategies, including key performance metrics and standardized experimental protocols, have been proposed and widely applied to better understand the strengths and weaknesses of the systems, offering key routes for model improvement. The paper concludes with a concise summary of the status quo and a brief outlook in terms of future development.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-019-8203-1</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2019-09, Vol.36 (9), p.938-960
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e201909005
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Atmospheric models
Atmospheric Sciences
Computer simulation
Computers
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Ensemble forecasting
Evaluation
Forecasting
Formulations
Geophysics/Geodesy
Mathematical models
Meteorology
Modelling
National Reports to the IUGG by Chinese National Committee for IAMAS
Parallel computers
Parameterization
Performance measurement
Physics
Review
title Recent Progress in Numerical Atmospheric Modeling in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Progress%20in%20Numerical%20Atmospheric%20Modeling%20in%20China&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Yu,%20Rucong&rft.date=2019-09-01&rft.volume=36&rft.issue=9&rft.spage=938&rft.epage=960&rft.pages=938-960&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-019-8203-1&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201909005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2252770755&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e201909005&rfr_iscdi=true