Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation
The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2018-11, Vol.35 (11), p.1347-1361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1361 |
---|---|
container_issue | 11 |
container_start_page | 1347 |
container_title | Advances in atmospheric sciences |
container_volume | 35 |
creator | Li, Lun Zhang, Renhe Wen, Min Duan, Jianping |
description | The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former, with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases, indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion. |
doi_str_mv | 10.1007/s00376-018-8057-y |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201811002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e201811002</wanfj_id><sourcerecordid>dqkxjz_e201811002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-13611399a7fefe4280e639d2bb44bf14cd9b4dacb9ae1fc2b75a07199782475c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWKs_wF3AlYtoHvPKsoqPgk9QtyGTuaNpa6YmGXT89aaM4MpV4HK-EzgIHTJ6wigtTwOloiwIZRWpaF6SYQtNWFUwInMhttGE8rwgLBd0F-2FsEi0FBWbIHvbNf1KR9s53LU4vgGeuwgu2DhsDnc6GHARP9kaonb4IbGge_zS-WgNBFwPeBbfu7B-A28Nfux1sOTMfgIsVwO-D8auRv0-2mn1KsDB7ztFz5cXT-fX5Ob-an4-uyFGUB4JEwVjQkpdttBCxisKhZANr-ssq1uWmUbWWaNNLTWw1vC6zDUtmZRlxbMyN2KKjkfvp3atdq9q0fXepR9V87H8Wnwr4KkSS9V4Yo9Gdu27jx5C_IP5JmsuKS8SxUbK-C4ED61ae_uu_aAYVRtMjfVV8qpNfTWkDR83IbHuFfyf-f_RD-3tiOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100759026</pqid></control><display><type>article</type><title>Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Lun ; Zhang, Renhe ; Wen, Min ; Duan, Jianping</creator><creatorcontrib>Li, Lun ; Zhang, Renhe ; Wen, Min ; Duan, Jianping</creatorcontrib><description>The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former, with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases, indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-018-8057-y</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric Sciences ; Convergence ; Data processing ; Density stratification ; Divergence ; Earth and Environmental Science ; Earth Sciences ; Fields ; Geophysics/Geodesy ; Heating ; Isobaric surfaces ; Latent heat ; Meteorology ; Modulation ; Original Paper ; Periodic variations ; Phases ; Spatial distribution ; Stratification ; Temperature ; Thermodynamic fields ; Vortices ; Water vapor ; Water vapour</subject><ispartof>Advances in atmospheric sciences, 2018-11, Vol.35 (11), p.1347-1361</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Advances in Atmospheric Sciences is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-13611399a7fefe4280e639d2bb44bf14cd9b4dacb9ae1fc2b75a07199782475c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-018-8057-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-018-8057-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Wen, Min</creatorcontrib><creatorcontrib>Duan, Jianping</creatorcontrib><title>Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former, with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases, indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.</description><subject>Atmospheric Sciences</subject><subject>Convergence</subject><subject>Data processing</subject><subject>Density stratification</subject><subject>Divergence</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fields</subject><subject>Geophysics/Geodesy</subject><subject>Heating</subject><subject>Isobaric surfaces</subject><subject>Latent heat</subject><subject>Meteorology</subject><subject>Modulation</subject><subject>Original Paper</subject><subject>Periodic variations</subject><subject>Phases</subject><subject>Spatial distribution</subject><subject>Stratification</subject><subject>Temperature</subject><subject>Thermodynamic fields</subject><subject>Vortices</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEURoMoWKs_wF3AlYtoHvPKsoqPgk9QtyGTuaNpa6YmGXT89aaM4MpV4HK-EzgIHTJ6wigtTwOloiwIZRWpaF6SYQtNWFUwInMhttGE8rwgLBd0F-2FsEi0FBWbIHvbNf1KR9s53LU4vgGeuwgu2DhsDnc6GHARP9kaonb4IbGge_zS-WgNBFwPeBbfu7B-A28Nfux1sOTMfgIsVwO-D8auRv0-2mn1KsDB7ztFz5cXT-fX5Ob-an4-uyFGUB4JEwVjQkpdttBCxisKhZANr-ssq1uWmUbWWaNNLTWw1vC6zDUtmZRlxbMyN2KKjkfvp3atdq9q0fXepR9V87H8Wnwr4KkSS9V4Yo9Gdu27jx5C_IP5JmsuKS8SxUbK-C4ED61ae_uu_aAYVRtMjfVV8qpNfTWkDR83IbHuFfyf-f_RD-3tiOI</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Li, Lun</creator><creator>Zhang, Renhe</creator><creator>Wen, Min</creator><creator>Duan, Jianping</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Chinese Academy Science Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China%Institute of Atmospheric Physics, Chinese Academy Science, Beijing 100029, China</general><general>State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China%Institute of Atmospheric Sciences, Fudan University, Shanghai 200433, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20181101</creationdate><title>Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation</title><author>Li, Lun ; Zhang, Renhe ; Wen, Min ; Duan, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-13611399a7fefe4280e639d2bb44bf14cd9b4dacb9ae1fc2b75a07199782475c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atmospheric Sciences</topic><topic>Convergence</topic><topic>Data processing</topic><topic>Density stratification</topic><topic>Divergence</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fields</topic><topic>Geophysics/Geodesy</topic><topic>Heating</topic><topic>Isobaric surfaces</topic><topic>Latent heat</topic><topic>Meteorology</topic><topic>Modulation</topic><topic>Original Paper</topic><topic>Periodic variations</topic><topic>Phases</topic><topic>Spatial distribution</topic><topic>Stratification</topic><topic>Temperature</topic><topic>Thermodynamic fields</topic><topic>Vortices</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Wen, Min</creatorcontrib><creatorcontrib>Duan, Jianping</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lun</au><au>Zhang, Renhe</au><au>Wen, Min</au><au>Duan, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>35</volume><issue>11</issue><spage>1347</spage><epage>1361</epage><pages>1347-1361</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>The modulation of the intensity of nascent Tibetan Plateau vortices (ITPV) by atmospheric quasi-biweekly oscillation (QBWO) is investigated based on final operational global analysis data from the National Centers for Environmental Prediction. The spatial and temporal distributions of the ITPV show distinct features of 10–20-day QBWO. The average ITPV is much higher in the positive phases than in the negative phases, and the number of strong TPVs is much larger in the former, with a peak that appears in phase 3. In addition, the maximum centers of the ITPV stretch eastward in the positive phases, indicating periodic variations in the locations where strong TPVs are generated. The large-scale circulations and related thermodynamic fields are discussed to investigate the mechanism by which the 10–20-day QBWO modulates the ITPV. The atmospheric circulations and heating fields of the 10–20-day QBWO have a major impact on the ITPV. In the positive QBWO phases, the anomalous convergence at 500 hPa and divergence at 200 hPa are conducive to ascending motion. In addition, the convergence centers of the water vapor and the atmospheric unstable stratification are found in the positive QBWO phases and move eastward. Correspondingly, condensational latent heat is released and shifts eastward with the heating centers located at 400 hPa, which favors a higher ITPV by depressing the isobaric surface at 500 hPa. All of the dynamic and thermodynamic conditions in the positive QBWO phases are conducive to the generation of stronger TPVs and their eastward expansion.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-018-8057-y</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2018-11, Vol.35 (11), p.1347-1361 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e201811002 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Atmospheric Sciences Convergence Data processing Density stratification Divergence Earth and Environmental Science Earth Sciences Fields Geophysics/Geodesy Heating Isobaric surfaces Latent heat Meteorology Modulation Original Paper Periodic variations Phases Spatial distribution Stratification Temperature Thermodynamic fields Vortices Water vapor Water vapour |
title | Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A02%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20the%20Intensity%20of%20Nascent%20Tibetan%20Plateau%20Vortices%20by%20Atmospheric%20Quasi-Biweekly%20Oscillation&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Li,%20Lun&rft.date=2018-11-01&rft.volume=35&rft.issue=11&rft.spage=1347&rft.epage=1361&rft.pages=1347-1361&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-018-8057-y&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201811002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2100759026&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e201811002&rfr_iscdi=true |