Effect of Stochastic MJO Forcing on ENSO Predictability
Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2011-11, Vol.28 (6), p.1279-1290 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1290 |
---|---|
container_issue | 6 |
container_start_page | 1279 |
container_title | Advances in atmospheric sciences |
container_volume | 28 |
creator | 彭跃华 段晚锁 项杰 |
description | Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast. |
doi_str_mv | 10.1007/s00376-011-0126-4 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201106005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>39713706</cqvip_id><wanfj_id>dqkxjz_e201106005</wanfj_id><sourcerecordid>dqkxjz_e201106005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-4f0b783ec0599664da7fbc853a9fd4adbb84453ced4d2bd055adc34b655efa843</originalsourceid><addsrcrecordid>eNp9kEtP6zAQhS0EEuXxA9gFNuguAuP4meUVai8goEjA2nL8KCklpnYqHr8eV0FciQWL0Wy-c87MQegAwwkGEKcJgAheAsZ5Kl7SDTTCkuOyZoRsohFUjJeYEdhGOynNM10TiUdIjL13pi-CL-76YB516ltTXF9Oi0mIpu1mReiK8c3dtLiNzram1027aPv3PbTl9SK5_a-9ix4m4_uz8_Jq-u_i7O9VaSiIvqQeGiGJM8DqmnNqtfCNkYzo2luqbdNIShkxzlJbNRYY09YQ2nDGnNeSkl30Z_B91Z3X3UzNwyp2OVHZ5dPb_EO5Kv8MHIBl9nhgX2JYrlzq1XObjFssdOfCKqkaKkKrDGby6Af5bStrKYBxyTOEB8jEkFJ0Xr3E9lnHd4VBrUtXQ-kqH6DWpav1udWgSZntZi7-N_5NdPgV9Bi62TLrvpNILTARwMkneOqNPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898705686</pqid></control><display><type>article</type><title>Effect of Stochastic MJO Forcing on ENSO Predictability</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>彭跃华 段晚锁 项杰</creator><creatorcontrib>彭跃华 段晚锁 项杰</creatorcontrib><description>Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-011-0126-4</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Atmospheric Sciences ; Data collection ; Earth and Environmental Science ; Earth Sciences ; El Nino ; ENSO事件 ; ENSO预测 ; Geophysics/Geodesy ; Meteorology ; MJO ; Ocean circulation ; Ocean currents ; Ocean-atmosphere interaction ; 不确定性 ; 可预报性 ; 数据同化 ; 随机 ; 预测误差</subject><ispartof>Advances in atmospheric sciences, 2011-11, Vol.28 (6), p.1279-1290</ispartof><rights>Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-4f0b783ec0599664da7fbc853a9fd4adbb84453ced4d2bd055adc34b655efa843</citedby><cites>FETCH-LOGICAL-c407t-4f0b783ec0599664da7fbc853a9fd4adbb84453ced4d2bd055adc34b655efa843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-011-0126-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-011-0126-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>彭跃华 段晚锁 项杰</creatorcontrib><title>Effect of Stochastic MJO Forcing on ENSO Predictability</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><addtitle>Advances in Atmospheric Sciences</addtitle><description>Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.</description><subject>Atmospheric Sciences</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>El Nino</subject><subject>ENSO事件</subject><subject>ENSO预测</subject><subject>Geophysics/Geodesy</subject><subject>Meteorology</subject><subject>MJO</subject><subject>Ocean circulation</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere interaction</subject><subject>不确定性</subject><subject>可预报性</subject><subject>数据同化</subject><subject>随机</subject><subject>预测误差</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtP6zAQhS0EEuXxA9gFNuguAuP4meUVai8goEjA2nL8KCklpnYqHr8eV0FciQWL0Wy-c87MQegAwwkGEKcJgAheAsZ5Kl7SDTTCkuOyZoRsohFUjJeYEdhGOynNM10TiUdIjL13pi-CL-76YB516ltTXF9Oi0mIpu1mReiK8c3dtLiNzram1027aPv3PbTl9SK5_a-9ix4m4_uz8_Jq-u_i7O9VaSiIvqQeGiGJM8DqmnNqtfCNkYzo2luqbdNIShkxzlJbNRYY09YQ2nDGnNeSkl30Z_B91Z3X3UzNwyp2OVHZ5dPb_EO5Kv8MHIBl9nhgX2JYrlzq1XObjFssdOfCKqkaKkKrDGby6Af5bStrKYBxyTOEB8jEkFJ0Xr3E9lnHd4VBrUtXQ-kqH6DWpav1udWgSZntZi7-N_5NdPgV9Bi62TLrvpNILTARwMkneOqNPg</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>彭跃华 段晚锁 项杰</creator><general>SP Science Press</general><general>Springer Nature B.V</general><general>The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029</general><general>Department of Military Oceanography, Dalian Naval Academy, Dalian 116018</general><general>Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101%The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029%Institute of Meteorology, PLA University of Science and Technology, Nanjing 211101</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20111101</creationdate><title>Effect of Stochastic MJO Forcing on ENSO Predictability</title><author>彭跃华 段晚锁 项杰</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-4f0b783ec0599664da7fbc853a9fd4adbb84453ced4d2bd055adc34b655efa843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric Sciences</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>El Nino</topic><topic>ENSO事件</topic><topic>ENSO预测</topic><topic>Geophysics/Geodesy</topic><topic>Meteorology</topic><topic>MJO</topic><topic>Ocean circulation</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere interaction</topic><topic>不确定性</topic><topic>可预报性</topic><topic>数据同化</topic><topic>随机</topic><topic>预测误差</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>彭跃华 段晚锁 项杰</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>彭跃华 段晚锁 项杰</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Stochastic MJO Forcing on ENSO Predictability</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2011-11-01</date><risdate>2011</risdate><volume>28</volume><issue>6</issue><spage>1279</spage><epage>1290</epage><pages>1279-1290</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s00376-011-0126-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2011-11, Vol.28 (6), p.1279-1290 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e201106005 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Atmospheric Sciences Data collection Earth and Environmental Science Earth Sciences El Nino ENSO事件 ENSO预测 Geophysics/Geodesy Meteorology MJO Ocean circulation Ocean currents Ocean-atmosphere interaction 不确定性 可预报性 数据同化 随机 预测误差 |
title | Effect of Stochastic MJO Forcing on ENSO Predictability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Stochastic%20MJO%20Forcing%20on%20ENSO%20Predictability&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=%E5%BD%AD%E8%B7%83%E5%8D%8E%20%E6%AE%B5%E6%99%9A%E9%94%81%20%E9%A1%B9%E6%9D%B0&rft.date=2011-11-01&rft.volume=28&rft.issue=6&rft.spage=1279&rft.epage=1290&rft.pages=1279-1290&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-011-0126-4&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201106005%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898705686&rft_id=info:pmid/&rft_cqvip_id=39713706&rft_wanfj_id=dqkxjz_e201106005&rfr_iscdi=true |