Statistical Prediction of Heavy Rain in South Korea
This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the correspo...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2005-09, Vol.22 (5), p.703-710 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 710 |
---|---|
container_issue | 5 |
container_start_page | 703 |
container_title | Advances in atmospheric sciences |
container_volume | 22 |
creator | Sohn, Keon Tae Lee, Jeong Hyeong Lee, Soon Hwan Ryu, Chan Su |
description | This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended. |
doi_str_mv | 10.1007/BF02918713 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e200505009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20503232</cqvip_id><wanfj_id>dqkxjz_e200505009</wanfj_id><sourcerecordid>dqkxjz_e200505009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsXP8GiJ4XVl2R3kxy1WCsWFKvnkOZPm7Zu2uxWrZ_eSIWeZAbe5ce8YRA6xXCFAdj1bR-IwJxhuoc6mFc4FyWl-6gDpKxyXFI4REdNMwOggnLcQXTUqtY3rddqkT1Ha7xufaiz4LKBVR-b7EX5OksehXU7zR5DtOoYHTi1aOzJ3-2it_7da2-QD5_uH3o3w1zTgrU5Fqo0Y62AKGELEAwo185gYZUpLSdWGMOYG3MnCu2Y4UVBQRjgZaULajXtoott7qeqnaonchbWsU4fpVnNv2bf0hKAMglEYs-37DKG1do27Q4mjFcCV5xViTr7j8KCE14xThN0uYV0DE0TrZPL6N9V3EgM8ndluVt5l6inoZ6sfGo5Vnru_MJKkqpRkvQDw2h3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198286783</pqid></control><display><type>article</type><title>Statistical Prediction of Heavy Rain in South Korea</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</creator><creatorcontrib>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</creatorcontrib><description>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/BF02918713</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Atmospheric precipitations ; Decision trees ; Floods ; Mathematical models ; Modelling ; Neural networks ; Numerical models ; Rain ; Rainfall ; Rainfall forecasting ; Regression analysis ; Regression models ; Statistical analysis ; Statistical methods ; Statistical models ; Statistical prediction ; Weather forecasting ; 决策树 ; 线性衰退 ; 统计学分析 ; 降雨量</subject><ispartof>Advances in atmospheric sciences, 2005-09, Vol.22 (5), p.703-710</ispartof><rights>Advances in Atmospheric Sciences 2003</rights><rights>Advances in Atmospheric Sciences 2003.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</citedby><cites>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sohn, Keon Tae</creatorcontrib><creatorcontrib>Lee, Jeong Hyeong</creatorcontrib><creatorcontrib>Lee, Soon Hwan</creatorcontrib><creatorcontrib>Ryu, Chan Su</creatorcontrib><title>Statistical Prediction of Heavy Rain in South Korea</title><title>Advances in atmospheric sciences</title><addtitle>Advances in Atmospheric Sciences</addtitle><description>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</description><subject>Atmospheric precipitations</subject><subject>Decision trees</subject><subject>Floods</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Numerical models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical prediction</subject><subject>Weather forecasting</subject><subject>决策树</subject><subject>线性衰退</subject><subject>统计学分析</subject><subject>降雨量</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEUxIMoWKsXP8GiJ4XVl2R3kxy1WCsWFKvnkOZPm7Zu2uxWrZ_eSIWeZAbe5ce8YRA6xXCFAdj1bR-IwJxhuoc6mFc4FyWl-6gDpKxyXFI4REdNMwOggnLcQXTUqtY3rddqkT1Ha7xufaiz4LKBVR-b7EX5OksehXU7zR5DtOoYHTi1aOzJ3-2it_7da2-QD5_uH3o3w1zTgrU5Fqo0Y62AKGELEAwo185gYZUpLSdWGMOYG3MnCu2Y4UVBQRjgZaULajXtoott7qeqnaonchbWsU4fpVnNv2bf0hKAMglEYs-37DKG1do27Q4mjFcCV5xViTr7j8KCE14xThN0uYV0DE0TrZPL6N9V3EgM8ndluVt5l6inoZ6sfGo5Vnru_MJKkqpRkvQDw2h3ZQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Sohn, Keon Tae</creator><creator>Lee, Jeong Hyeong</creator><creator>Lee, Soon Hwan</creator><creator>Ryu, Chan Su</creator><general>Springer Nature B.V</general><general>Pusan National University, Busan 609-735, Korea%Dong-A University, Busan 604-714, Korea%Chosun University, Gwangju 501-759, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20050901</creationdate><title>Statistical Prediction of Heavy Rain in South Korea</title><author>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Atmospheric precipitations</topic><topic>Decision trees</topic><topic>Floods</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Numerical models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical prediction</topic><topic>Weather forecasting</topic><topic>决策树</topic><topic>线性衰退</topic><topic>统计学分析</topic><topic>降雨量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Keon Tae</creatorcontrib><creatorcontrib>Lee, Jeong Hyeong</creatorcontrib><creatorcontrib>Lee, Soon Hwan</creatorcontrib><creatorcontrib>Ryu, Chan Su</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Keon Tae</au><au>Lee, Jeong Hyeong</au><au>Lee, Soon Hwan</au><au>Ryu, Chan Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Prediction of Heavy Rain in South Korea</atitle><jtitle>Advances in atmospheric sciences</jtitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>22</volume><issue>5</issue><spage>703</spage><epage>710</epage><pages>703-710</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02918713</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2005-09, Vol.22 (5), p.703-710 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e200505009 |
source | SpringerNature Journals; Alma/SFX Local Collection |
subjects | Atmospheric precipitations Decision trees Floods Mathematical models Modelling Neural networks Numerical models Rain Rainfall Rainfall forecasting Regression analysis Regression models Statistical analysis Statistical methods Statistical models Statistical prediction Weather forecasting 决策树 线性衰退 统计学分析 降雨量 |
title | Statistical Prediction of Heavy Rain in South Korea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Prediction%20of%20Heavy%20Rain%20in%20South%20Korea&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Sohn,%20Keon%20Tae&rft.date=2005-09-01&rft.volume=22&rft.issue=5&rft.spage=703&rft.epage=710&rft.pages=703-710&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/BF02918713&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e200505009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198286783&rft_id=info:pmid/&rft_cqvip_id=20503232&rft_wanfj_id=dqkxjz_e200505009&rfr_iscdi=true |