Statistical Prediction of Heavy Rain in South Korea

This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the correspo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in atmospheric sciences 2005-09, Vol.22 (5), p.703-710
Hauptverfasser: Sohn, Keon Tae, Lee, Jeong Hyeong, Lee, Soon Hwan, Ryu, Chan Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 710
container_issue 5
container_start_page 703
container_title Advances in atmospheric sciences
container_volume 22
creator Sohn, Keon Tae
Lee, Jeong Hyeong
Lee, Soon Hwan
Ryu, Chan Su
description This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.
doi_str_mv 10.1007/BF02918713
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e200505009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>20503232</cqvip_id><wanfj_id>dqkxjz_e200505009</wanfj_id><sourcerecordid>dqkxjz_e200505009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsXP8GiJ4XVl2R3kxy1WCsWFKvnkOZPm7Zu2uxWrZ_eSIWeZAbe5ce8YRA6xXCFAdj1bR-IwJxhuoc6mFc4FyWl-6gDpKxyXFI4REdNMwOggnLcQXTUqtY3rddqkT1Ha7xufaiz4LKBVR-b7EX5OksehXU7zR5DtOoYHTi1aOzJ3-2it_7da2-QD5_uH3o3w1zTgrU5Fqo0Y62AKGELEAwo185gYZUpLSdWGMOYG3MnCu2Y4UVBQRjgZaULajXtoott7qeqnaonchbWsU4fpVnNv2bf0hKAMglEYs-37DKG1do27Q4mjFcCV5xViTr7j8KCE14xThN0uYV0DE0TrZPL6N9V3EgM8ndluVt5l6inoZ6sfGo5Vnru_MJKkqpRkvQDw2h3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198286783</pqid></control><display><type>article</type><title>Statistical Prediction of Heavy Rain in South Korea</title><source>SpringerNature Journals</source><source>Alma/SFX Local Collection</source><creator>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</creator><creatorcontrib>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</creatorcontrib><description>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/BF02918713</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Atmospheric precipitations ; Decision trees ; Floods ; Mathematical models ; Modelling ; Neural networks ; Numerical models ; Rain ; Rainfall ; Rainfall forecasting ; Regression analysis ; Regression models ; Statistical analysis ; Statistical methods ; Statistical models ; Statistical prediction ; Weather forecasting ; 决策树 ; 线性衰退 ; 统计学分析 ; 降雨量</subject><ispartof>Advances in atmospheric sciences, 2005-09, Vol.22 (5), p.703-710</ispartof><rights>Advances in Atmospheric Sciences 2003</rights><rights>Advances in Atmospheric Sciences 2003.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</citedby><cites>FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sohn, Keon Tae</creatorcontrib><creatorcontrib>Lee, Jeong Hyeong</creatorcontrib><creatorcontrib>Lee, Soon Hwan</creatorcontrib><creatorcontrib>Ryu, Chan Su</creatorcontrib><title>Statistical Prediction of Heavy Rain in South Korea</title><title>Advances in atmospheric sciences</title><addtitle>Advances in Atmospheric Sciences</addtitle><description>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</description><subject>Atmospheric precipitations</subject><subject>Decision trees</subject><subject>Floods</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Numerical models</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall forecasting</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Statistical prediction</subject><subject>Weather forecasting</subject><subject>决策树</subject><subject>线性衰退</subject><subject>统计学分析</subject><subject>降雨量</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEUxIMoWKsXP8GiJ4XVl2R3kxy1WCsWFKvnkOZPm7Zu2uxWrZ_eSIWeZAbe5ce8YRA6xXCFAdj1bR-IwJxhuoc6mFc4FyWl-6gDpKxyXFI4REdNMwOggnLcQXTUqtY3rddqkT1Ha7xufaiz4LKBVR-b7EX5OksehXU7zR5DtOoYHTi1aOzJ3-2it_7da2-QD5_uH3o3w1zTgrU5Fqo0Y62AKGELEAwo185gYZUpLSdWGMOYG3MnCu2Y4UVBQRjgZaULajXtoott7qeqnaonchbWsU4fpVnNv2bf0hKAMglEYs-37DKG1do27Q4mjFcCV5xViTr7j8KCE14xThN0uYV0DE0TrZPL6N9V3EgM8ndluVt5l6inoZ6sfGo5Vnru_MJKkqpRkvQDw2h3ZQ</recordid><startdate>20050901</startdate><enddate>20050901</enddate><creator>Sohn, Keon Tae</creator><creator>Lee, Jeong Hyeong</creator><creator>Lee, Soon Hwan</creator><creator>Ryu, Chan Su</creator><general>Springer Nature B.V</general><general>Pusan National University, Busan 609-735, Korea%Dong-A University, Busan 604-714, Korea%Chosun University, Gwangju 501-759, Korea</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20050901</creationdate><title>Statistical Prediction of Heavy Rain in South Korea</title><author>Sohn, Keon Tae ; Lee, Jeong Hyeong ; Lee, Soon Hwan ; Ryu, Chan Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-19a5dbca02a9e4097038cfd19ead5e82e9dd77fb8f94cf7d844309d0856c43ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Atmospheric precipitations</topic><topic>Decision trees</topic><topic>Floods</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Numerical models</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall forecasting</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Statistical prediction</topic><topic>Weather forecasting</topic><topic>决策树</topic><topic>线性衰退</topic><topic>统计学分析</topic><topic>降雨量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sohn, Keon Tae</creatorcontrib><creatorcontrib>Lee, Jeong Hyeong</creatorcontrib><creatorcontrib>Lee, Soon Hwan</creatorcontrib><creatorcontrib>Ryu, Chan Su</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sohn, Keon Tae</au><au>Lee, Jeong Hyeong</au><au>Lee, Soon Hwan</au><au>Ryu, Chan Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Prediction of Heavy Rain in South Korea</atitle><jtitle>Advances in atmospheric sciences</jtitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2005-09-01</date><risdate>2005</risdate><volume>22</volume><issue>5</issue><spage>703</spage><epage>710</epage><pages>703-710</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02918713</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2005-09, Vol.22 (5), p.703-710
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e200505009
source SpringerNature Journals; Alma/SFX Local Collection
subjects Atmospheric precipitations
Decision trees
Floods
Mathematical models
Modelling
Neural networks
Numerical models
Rain
Rainfall
Rainfall forecasting
Regression analysis
Regression models
Statistical analysis
Statistical methods
Statistical models
Statistical prediction
Weather forecasting
决策树
线性衰退
统计学分析
降雨量
title Statistical Prediction of Heavy Rain in South Korea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Prediction%20of%20Heavy%20Rain%20in%20South%20Korea&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Sohn,%20Keon%20Tae&rft.date=2005-09-01&rft.volume=22&rft.issue=5&rft.spage=703&rft.epage=710&rft.pages=703-710&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/BF02918713&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e200505009%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198286783&rft_id=info:pmid/&rft_cqvip_id=20503232&rft_wanfj_id=dqkxjz_e200505009&rfr_iscdi=true